Experimental support to the BCS theory.

W. Buckel, R. Kleiner "Superconductivity - Fundamentals and Applications", 2nd Ed Wiley, 2004 C. Enss, S. Hunklinger "Low-Temperature Physics", Springer

and figur

Isotope effect

If the weak attractive interaction is driven by phonons (lattice distortions -> vibrations), superconductivity depends upon *lattice* properties (not only *electronic* properties). If electrons within δE at E_F are involved in the pairing process, one finds

$$T_c = 1.13 \frac{\delta E}{k_B} e^{-1/N_n(E_F)N_n}$$

Identifying δE with the Debye frequency, since $\omega_D \propto M^{-1/2}$, $T_c \propto M^{-1/2}$

Isotope production -> experimental verification in superconductive elements

 Table 3.1
 Isotope effect in mercury [13].

Average atomic mass	199.7	200.7	202.0	203.4
Transition temperature T_c in K	4.161	4.150	4.143	4.126

Monday, October 29, 12

Isotope effect

More often one has departure from the simple law $T_c \propto M^{-1/2}$.

sotope exponent β^{\star}	0.50	0.47						
		0.47	0.48	0.5	0.5	0.33	0.2	0.0

Monday, October 29, 12

Energy gap and T_c

Theoretical prediction: $\Delta = 1.75 k_B T_c$ (weak coupling)

Elements

Table 3.3 Energy gap $2\Delta_0$ in units of k_BT_c for some superconducting elements. The numbers in brackets indicate the energy gap in meV. The values are taken from R. D. Parks, Superconductivity, p. 14, p.16 and D. H. Douglas Jr., L. M. Falicov, Progress of Low Temperature Physics, vol. 4 97 (1964), North-Holland, Amsterdam. For special details see Superconductivity Data, no. 19–1 (1982), Fachinformationszentrum Karlsruhe GmbH.

Element		1	Method	
	T _c in Kelvin	Tunnel junctions	Ultrasound	Light absorption
Sn	3.72	3.5 ± 0.1 (1.15)	-	3.5
In	3.4	$3.5 \pm 0.1 (1.05)$	3.5 ± 0.2	3.9 ± 0.3
TI	2.39	3.6 ± 0.1 (0.75)	-	-
Та	4.29	$3.5 \pm 0.1 (1.30)$	3.5 ± 0.1	3.0
Nb	9.2	3.6 (2.90)	4.0 ± 0.1	2.8 ± 0.3
Hg	4.15	4.6 ± 0.1 (1.65)	-	4.6 ± 0.2
Pb	7.2	4.3 ± 0.05 (2.70)		4.4 ± 0.1

Enrico Sil	va - diritti riservati - Non	è permessa, fra l'altro, l'inclusion	e anche parziale in altre oper	re senza il consenso scritto dell'ai	lore
	ł	inergy ga	ap and I	l _c	
Theo	oretical pr	ediction: $\Delta =$	$1.75 k_B T_c$	(weak coupl	ing)
		Comp	ounds		
Table 3.4 Energy ga Experimental method etc. Many data can a	o 2∆ ₀ for se ls: tunnelinş lso be found	lected supercond g effect, optical r d in the monogra	ducting componethods, nucl aph [M14].	ounds (s-wave C ear spin resona	Cooper pairing). nce, specific heat,
Material	T _c in K	$2\Delta_0$ in meV	$2\Delta_0/k_BT_c$	Reference	cf. Section
Nb₃Sn	18	6.55	4.2	[21]	2.3.1
NbN	13	4.6	4.1	[22]	2.3.1
MgB ₂	40	3.6-15	1.1-4.5	[18]	2.3.2
Rb3C60	29.5	10-13	4.0-5.1	[17]	2.4
		1	1	1	
ErRh ₄ B ₄	8.5	2.7–3	3.8-4.2	[23]	2.5
ErRh ₄ B ₄ PbMo ₆ S ₃	8.5 12	2.7–3 4–5	3.8–4.2 4–5	[23] [24]	2.5 2.5
ErRh ₄ B ₄ PbMo ₆ S ₃ YNi ₂ B ₂ C	8.5 12 15.5	2.7–3 4–5 4.7	3.8–4.2 4–5 3.5	[23] [24] [25]	2.5 2.5 2.5
ErRh ₄ B ₄ PbMo ₆ S ₃ YNi ₂ B ₂ C NbSe ₂	8.5 12 15.5 7	2.7–3 4–5 4.7 2.2	3.8-4.2 4-5 3.5 3.7	[23] [24] [25] [26]	2.5 2.5 2.5 2.7
$ErRh_4B_4$ $PbMo_6S_3$ YNi_2B_2C $NbSe_2$ $BaPb_{0.75}Bi_{0.25}O_3$	8.5 12 15.5 7 11.5	2.7–3 4–5 4.7 2.2 3.5	3.8–4.2 4–5 3.5 3.7 3.5	[23] [24] [25] [26] [27]	2.5 2.5 2.7 2.8.2

Monday, October 29, 12