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Surface resistance: w? dependence
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Fig. 5. The surface resistance of Nb at 42K as a function of
frequency [62,63]. Whereas the isotropic BCS surface resistance
(- -+ ) resulted in Roc@'* around 1 GHz, the measurements fit
better to @ (- - -). The solid curve, which fits the data over the
entire range, is a calculation based on the smearing of the BCS
density-of-states singularity by the energy gap anisotropy in the

J.P. Tumeaure, 1J. Halbritter, z and H. A. Schwettman  Presence of impurity scattering [61]. The authors thank G. Mller
J. Supercond. 4, 341 (1991) for providing this figure.
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Figure 17. Frequency dependence of the surface resistance of Nb.

Note the departure from a square law at high frequencies, indicative . N .. . .
Figure 20. Q-slope for Nb/Cu cavities at various frequencies.
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Surface resistance and the gap
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Fig. 2. Temperature dependence of surface resistance of niobium at
3.7GHz measured in the TE,,, mode at H,~10G. The values
computed with the BCS theory used the following material para-
meters

T.=9.25K; 2,(T=0,1=0)=3204;

A(0) 1.85; Ep(T=0,l=00)=620A; !=1000A0r 80 A.
The measured A(O)KT,~178 (4/kT,=164) is smaller than for
pure Nb, which indicates — together with the short mean frec path
of 80 A — that a surface layer of Nb is enriched with interstitial 0
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Surface resistance and the gap
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Fig. 3. The superconducting surface resistance R,(7’) and the sur-
face reactance X(7) — X(0) [or A(T) — 4 (0)] as a function of tem-
perature for Nb at 8.6 GHz. The surface resistance and reactance
data are plotted with the symbols O and V, respectively. The solid
curves are the surface resistance and the surface reactance calcula-
ted from the Mattis-Bardeen theory. R, and X,, are the normal-
state surface resistance and reactance measured just above T,.. The
authors thank C. M. Lyneis for providing this data [53].
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Fig. 4. The penetration depth change, 1(T)—A(0), as a function
of temperature for Nb at 8.6 GHz for large values of 7,/T. The
circles are measured data with a resolution at the lowest tempera-
ture of about 10~'*m. The solid curve is the best-fit function of
the form exp (—A(0)/kT) with 2A(0)/k7.=3.736, which for these
data is an adequate approximation to the Mattis-Bardeen theory.
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J. Supercond. 4, 341 (1991)
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Applications: filters

Low losses: better filters!

better filters -> no
spurious harmonics.
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Fig. 15, Measured response at 77K of the four-pole-Chebyshev 1% bandwidth YBCO
microstrip fler shown in the previous fiure. The measured response of the same filer
fabricated from silver (operated at 77 K) and gold (opersted at 300K) are shown for

superconducting filte exhibis a dramatic improvement in insertion loss
and filtr shape factor. (From [1631)

N. Newman, W. G. Lyons
J. Supercond 6, 119 (1993)
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Figure 11.17 Measured transmission response at 77 K of a filter fabricated with a postan-
nealed YBCO signal line and ground plane on a 425 um thick LaAlO3 substrate. Passband
insertion loss is 0.3 dB. After Lyons and Withers [162]
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Figure 1116 Four-pole superconductive microstrip filter layout. The filters were fabricated
on LaAIO; substrates using gold, niobium and YBCO signal lines. After Lyons and Withers

[162].

K. Fossheim, A. Sudbo,

- Physics and ", John Wiley and Sons, Ltd
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Applications: filters

Low losses: better filters!

better filters -> no
spurious harmonics.
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Fig. 2. (a) S, data for the LG 16-pole YBCO filter at 70 K. The

Fig. 3. A view of an assembled LG HTS receiver front-end con- - 2
sisting of a 12-pole HTS fller, LNAS and a temperature-controlled 16-pole filter has the same pass band and the center frequency as

eryocooler. Its specifications are listed in Table 1

the 12-pole filter in Fig. 1. Increased number of poles resulted in
improved out-band characteristics (40-50 dB/MHz) at the expense
of insertion loss (~0.2 dB). The simulated results (dotted line) ap-
pear to match well with the measured ones after tuning; (b) A view
of the packaged LG 16-pole YBCO filter. The dimensions of the
S.Y. Lee and B. Oh substrate are 45 x 18 x 0.5 mm®.
J. Supercond. 16, 823 (2003)
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Applications: accelerating cavities

l RF power in Beam induced power out 1

Low losses: high accelerating fields
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Fig.7.26  Principle of the acceleration of charged particles in a cylindri-
cal resonating cavity. The resonator is excited in the “TMg1o mode”, in

which the electric field is oriented parallel to the z axis, and the
magnetic field in azimuthal direction.

W. Buckel, R. Kleiner,
"Superconductivity -
Fundamentals and
Applications" (Wiley)

(b)

Fig.7.27 Resonator structure for the acceleration of electrons at
CEBAF (Jefferson Laboratory, Cornell, USA). Top: cross-sectional drawing.
Bottom: real structure. The structure consists of five resonators covered
with a Nb layer and placed in series. Its active length is 50 cm. The
resonance frequency is 1.5 GHz. The electron beam traverses the reso-
nator during one half-wave, whereas it traverses the opening between

LHC at the resonators during the second half-wave. Therefore, within the reso-

nators the electrons always experience an electric field that I

CERN them in the forward direction. (From [70] with permission of IOP).
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Applications: delay lines

Phase velocity:
(i) small

Compact delay lines (signal “waits” to be processed)
(ii) frequency independent

Dispersionless !

e
Ideal delay lines: % @ %

* lossless
« without dispersion (the signal does not
“spread”)

Hieng Tiong Su - Yi Wang - Frederick Huang - Michael J. Lancaster
J Supercond Nov Magn (2008) 21: 7-16

Fig.1 17]:and (@) coplanar
double-spiral meander Tines [10]

per wanstion and the coplana




