Josephson effect: voltage standard

Physics

Across a JJ irradiated by an ac current of frequency $f=\omega/2\pi$ there are current spikes at voltages

$$V_n = n\frac{\hbar}{2e}\omega = n\Phi_0 f$$

Amplitude of the time-averaged supercurrent spikes $(J_n : Bessel function of order n)$:

$$|I_{s,n}| = I_c \left| J_n \left(\frac{\Phi_0 V_{rf}}{f} \right) \right|$$

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autor

A voltage standard?

Warning: 100 GHz \longrightarrow V \approx 200 μ V (n=1): compare to 1 V or 10 V voltage standard.

Many (103÷4) junctions in series ?

Use high n?

$$V_n = n \frac{\hbar}{2e} \omega = n \Phi_0 f$$

$$n = 1, 2, 3, \dots$$

$$|I_{s,n}| = I_c \left| J_n \left(\frac{\Phi_0 V_{rf}}{f} \right) \right|$$

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Underdamped JJ

 $\beta_C = \frac{2\pi}{\Phi_0} I_o R_N^2 C \gg 1$

Zero current steps:

(recall the washboard potential)

Experimental IVCs obtained for an underdamped and overdamped Nb Josephson junction under microwave radiation. The IVCs clearly show the constant voltage steps at $V_{\rm D}$ (data from C.A. Hamilton, Rev. Sci. Instr. 71, 3611 (2000)).

ure from:

$$V_n = n\frac{\hbar}{2e}\omega = n\Phi_0 f$$

$$n = 1, 2, 3, \dots$$

$$|I_{s,n}| = I_c \left| J_n \left(\frac{\Phi_0 V_{rf}}{f} \right) \right|$$

 $|I_{s,n}| = I_c \left| J_n \left(\frac{\Phi_0 V_{rf}}{f} \right) \right|$

эти - инт голгин - гол с ретолог, раз инто, г тенгают чисте раздане и инте орга веда и солого жено или инто.

Problem: unequal switching

Warning: 100 GHz \longrightarrow V \approx 200 μ V (n=1): compare to 1 V or 10 V voltage standard.

Many (103÷4) junctions in series ?

Underdamped junctions -> zero current steps

But: stable zero current steps -> long-term (calibration) phase lock to the external microwave oscillator for a large series array.

$$V_n = n\frac{\hbar}{2e}\omega = n\Phi_0 f$$

• reduction of external noise

• avoid a Josephson junctions regime where chaotic phenomena can occur.

enomena can occur. Most stable when (numerical): $\omega=2\pi f\gg\sqrt{\frac{2eI_c}{\hbar C}}$

Low critical current High JJ capacitance (underdamped JJ)

Arrays of JJ

$$V_n = n \frac{\hbar}{2e} \omega = n \Phi_0 f$$

$$n = 1, 2, 3, \dots$$

$$|I_{s,n}| = I_c \left| J_n \left(\frac{\Phi_0 V_{rf}}{f} \right) \right|$$

Figure from:

J. Niemeyer, in "Handbook of Applied Superconductivity", ed. by B. Seeber IOP Publishing. 1998

Many junctions in series

Problems:

- JJ homogeneity (over ~103 JJs): different junction parameters -> unequal switching -> chaos
- homogeneous irradiation

Eurico Silva - diritti riservati - Non è permessa, fra l'altros, l'inclusione anche parziale in altre opere senza il consenso seritto dell'as Voltage standard

JJ in series, seen in parallel by the microwave stripline

gure from: R. Gross, A. Marx, Walther Meissner Institut http://www.wmi.badw.de/teaching/Lecturenotes/

NIST: 20208 (16 X 1263 lines) JJ operates at 75 GHz

Note: relative accuracy between labs = within labs with JJ voltage standard (make use of fundamental constants!)

Figure from:
R. Gross, A. Marx, Walther Meissner Institut http://www.wmi.badw.de/teaching/Lecturenotes/

However, note:

Direct proof of accuracy of a Josephson Voltage Standard is impossible:

while frequency (which tunes the Shapiro steps) can be determined to 10-12, no other voltage source of sufficient accuracy exist!

The instrument under testing limits the accuracy of the calibration.