Particelle identiche. Principio di Pauli.

1

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Particelle identiche: sommario

Finora: proprietà di particella singola. Volendo ottenere il comportamento di più particelle, è necessario trovare la fdo dell'intero sistema.

- caso di due particelle non interagenti
- concetti classici
- indistinguibilità
- simmetria e antisimmetria
- principio di esclusione di Pauli
- alcune notevoli conseguenze

Due particelle

Per semplificare gli aspetti formali: consideriamo due sole particelle.

Problema classico: particella a in x_1 , particella b in x_2 , energia potenziale V(x). Si cercano (ad es.) le leggi del moto $x_1(t), x_2(t)$.

Problema quantistico: particella a in x_1 , particella b in x_2 , energia potenziale V(x). Si cerca la fdo complessiva $\Psi(x_1, x_2, t)$ per cui $|\Psi|^2$ darà la densità di probabilità condizionata di trovare una particella in $x_1(t)$ e l'altra in $x_2(t)$.

3

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Caso classico

Siano date due particelle di massa m_1 e m_2 . In una dimensione, le loro posizioni siano x_1 e x_2 . Se le particelle non sono interagenti, l'energia potenziale è la somma $V(x_1)+V(x_2)$. L'energia totale classica è allora:

$$\frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V_1(x_1) + V_2(x_2) = E$$

Per conoscere l'evoluzione del sistema basta scrivere le opportune equazioni del moto per le due particelle, che possono essere distinte l'una dall'altra in ogni punto della loro traiettoria.

Caso quantistico

Per le stesse particelle <u>noninteragenti</u> del caso classico, per cui l'energia è:

$$\frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V_1(x_1) + V_2(x_2) = E$$

si suppone che lo stato sia descritto da una certa fdo $\Psi(x_1, x_2, t)$. Allora si scrive con immediata analogia (sostituendo ai momenti le loro espressioni in termini di operatori) l'equazione di Schrödinger:

$$-\frac{\hbar^2}{2m_1}\frac{\partial^2\Psi}{\partial x_1^2} - \frac{\hbar^2}{2m_2}\frac{\partial^2\Psi}{\partial x_2^2} + V_1(x_1)\Psi + V_2(x_2)\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

Similmente alla soluzione generale dell'equazione di Schrödinger, possiamo cercare soluzioni *separabili* (N.B. non è detto ne' che queste soluzioni ci siano, ne' che siano uniche) questa volta per *tre* variabili (x_1, x_2, t) , e quindi della forma:

$$\Psi(x_1, x_2, t) = \psi_a(x_1) \cdot \psi_b(x_2) \cdot f(t)$$

5

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Funzione d'onda

$$-\frac{\hbar^2}{2m_1}\frac{\partial^2 \Psi}{\partial x_1^2} - \frac{\hbar^2}{2m_2}\frac{\partial^2 \Psi}{\partial x_2^2} + V_1(x_1)\Psi + V_2(x_2)\Psi = i\hbar\frac{\partial \Psi}{\partial t}$$

Cerchiamo soluzioni separabili, della forma:

$$\Psi(x_1, x_2, t) = \psi_a(x_1) \cdot \psi_b(x_2) \cdot f(t)$$

Si trovano le equazioni non dipendenti dal tempo:

$$-\frac{\hbar^{2}}{2m_{1}}\frac{d^{2}\psi_{a}}{dx_{1}^{2}} + V_{1}(x_{1})\psi_{a} = E_{a}\psi_{a} \qquad -\frac{\hbar^{2}}{2m_{2}}\frac{d^{2}\psi_{b}}{dx_{2}^{2}} + V_{2}(x_{2})\psi_{b} = E_{b}\psi_{b}$$

$$con \quad (E_{a} + E_{b})f = i\hbar\frac{df}{dt} \qquad per cui \qquad f(t) = e^{-i(E_{a} + E_{b})t/\hbar}$$

e infine
$$\Psi(x_1, x_2, t) = \psi_a(x_1) \cdot \psi_b(x_2) \cdot e^{-i(E_a + E_b)t/\hbar}$$

Quindi l'evoluzione temporale è data dall'energia totale, ma la distribuzione spaziale è il prodotto di due fdo di particella singola.

Densità di probabilità

Data la fdo a due particelle:

$$\Psi(x_1, x_2, t) = \psi_a(x_1) \cdot \psi_b(x_2) \cdot e^{-i(E_a + E_b)t/\hbar}$$

l'interpretazione probabilistica richiede che si specifichi la posizione di ambedue le particelle. Ovvero, la probabilità dP di trovare una particella nell'intervallo dx_1 attorno a x_1 e l'altra nell'intervallo dx_2 attorno a x_2 è:

$$dP = |\Psi(x_1, x_2, t)|^2 dx_1 dx_2 = |\psi_a(x_1)|^2 dx_1 \cdot |\psi_b(x_2)|^2 dx_2$$

che rappresenta proprio la probabilità condizionata dei due eventi distinti.

Come vanno scritte le espressioni per particelle identiche?

7

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Particelle identiche vs. distinguibili

Nel caso classico le particelle, anche se identiche, restano comunque *distiguibili*: è sempre possibile seguire l'evoluzione di una delle due.

Questo *non è possibile* nel caso quantistico: una osservazione continua introdurrebbe una perturbazione che cambierebbe il sistema! Se le due particelle sono identiche, non è possibile distinguerle.

Pertanto, nel caso quantistico, se 1 e 2 sono particelle identiche, l'evento "la particella 1 è in x_1 e 2 è in x_2 " deve essere indistinguibile dall'evento "la particella 2 è in x_1 e 1 è in x_2 ".

Ovvero,

le fdo corrispondenti ai due stati devono essere fisicamente indistinguibili

Fdo di particelle identiche

le fdo corrispondenti ai due stati:

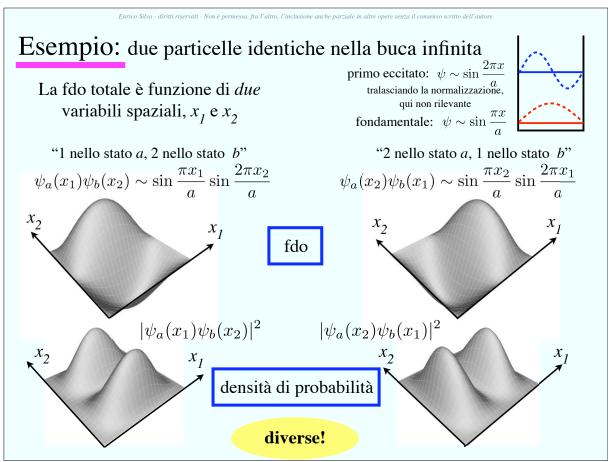
"la particella 1 è nello stato a e la particella 2 è nello stato b" $\psi_a(x_1)\psi_b(x_2)$

"la particella 2 è nello stato a e la particella 1 è nello stato b" $\psi_a(x_2)\psi_b(x_1)$

devono essere fisicamente indistinguibili.

ma queste due fdo *non* descrivono due particelle indistinguibili. Vediamolo con un esempio.

9



Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Particelle identiche: fdo simmetriche e antisimmetriche

"1 nello stato a, 2 nello stato b" $\psi_a(x_1)\psi_b(x_2)$

"2 nello stato a, 1 nello stato b" $\psi_a(x_2)\psi_b(x_1)$

queste due fdo *non* descrivono due particelle indistinguibili.

le seguenti combinazioni descrivono invece due particelle indistinguibili: ciascuna fdo dà densità di probabilità identica per scambio di particelle.

$$\psi_+(x_1,x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) + \psi_a(x_2) \psi_b(x_1) \right]$$
 fdo spazialmente simmetrica

Lo scambio delle due particelle ($a \bigcirc b$) fornisce la stessa identica fdo.

$$\psi_{-}(x_1,x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) - \psi_a(x_2) \psi_b(x_1) \right]$$
 fdo spazialmente antisimmetrica

Lo scambio delle due particelle ($a \bigcirc b$) fornisce la stessa fdo cambiata di segno (che non influenza la densità di probabilità).

11

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autoro

Principio di esclusione di Pauli

Consideriamo le fdo simmetrica e antisimmetrica:

$$\psi_{+}(x_1,x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) + \psi_a(x_2) \psi_b(x_1) \right] \quad \text{fdo spazialmente simmetrica}$$

$$\psi_{-}(x_1, x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) - \psi_a(x_2) \psi_b(x_1) \right] \text{ fdo spazialmente antisimmetrica}$$

Finora si è ammesso che *a* e *b* potessero indicare stati generici. Ma se *a* e *b* indicano lo stesso stato (ovvero, due particelle nel medesimo stato), *la fdo antisimmetrica svanisce*:

$$\psi_{-}(x_1, x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_a(x_2) - \psi_a(x_2) \psi_a(x_1) \right] = 0$$

Due particelle la cui fdo sia antisimmetrica non possono occupare simultaneamente lo stesso stato quantico.

Questo è il Principio di esclusione di Pauli.

Proprietà di sistemi di particelle identiche

Consideriamo le fdo simmetrica e antisimmetrica:

$$\psi_{+}(x_1,x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) + \psi_a(x_2) \psi_b(x_1) \right] \quad \text{fdo spazialmente simmetrica}$$

$$\psi_-(x_1,x_2)=rac{1}{\sqrt{2}}\left[\psi_a(x_1)\psi_b(x_2)-\psi_a(x_2)\psi_b(x_1)
ight]$$
 fdo spazialmente antisimmetrica

in generale daranno luogo a densità di probabilità differenti.

Vediamo le peculiarità nell'esempio precedente: due particelle nella buca infinita, occupanti i primi due stati energetici.

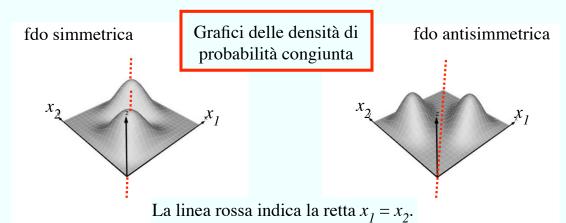
Nota: sono in due stati differenti!

13

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Esempio (cont.)

Stesso esempio: due particelle identiche in una buca infinita unidimensionale, collocate su due livelli energetici diversi (primo e secondo).



fdo simmetrica: ho *massimi* della densità di probabilità su $x_1 = x_2$.

Le particelle si trovano preferenzialmente nel medesimo punto.

fdo antisimmetrica: ho *minimi* della densità di probabilità su $x_1 = x_2$.

Le particelle preferenzialmente si trovano in punti diversi.

!!!

Forza di "scambio"

Dalla richiesta (quantistica) che le particelle siano indistinguibili, discende che la fdo di un sistema di due particelle identiche sia:

simmetrica oppure antisimmetrica

da questo, discende che particelle con fdo:

simmetrica

antisimmetrica

tendono a avvicinarsi fra loro

tendono a allontanarsi fra loro

(sempre nel senso della densità di probabilità)

Nota bene:

poiché si è supposto che le due particelle fossero *non interagenti*: è un fatto del tutto nuovo e esclusivamente quantistico. Non ha alcuna controparte classica. Discende esclusivamente alla richiesta di indistinguibilità.

Tale effetto prende il nome di forza di scambio.

15

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Una manifestazione della "forza di scambio"

$$\psi_{+}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} \left[\psi_{a}(x_{1})\psi_{b}(x_{2}) + \psi_{a}(x_{2})\psi_{b}(x_{1}) \right]$$

 ${\it fdo}~spazial mente~simmetrica$

$$\psi_{-}(x_1, x_2) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) - \psi_a(x_2) \psi_b(x_1) \right]$$

fdo spazialmente antisimmetrica

Calcolando la media del quadrato della distanza per le fdo simmetriche e antisimmetriche si ottiene (calcoli sul Griffiths):

$$\left\langle (x_1 - x_2)^2 \right\rangle_{\pm} = \int \psi_{\pm}^* (x_1 - x_2)^2 \psi_{\pm} dx_1 dx_2$$
$$= \left\langle x^2 \right\rangle_a + \left\langle x^2 \right\rangle_b - 2 \left\langle x \right\rangle_a \left\langle x \right\rangle_b \mp 2 \left| \left\langle x \right\rangle_{ab} \right|^2$$

"-2|...|2": simmetriche "+ 2|...|2": antisimm.

dove il pedice indica su quali fdo viene fatto l'integrale.

$$2\left|\int x\psi_a^*(x)\psi_b(x)dx\right|^2$$

ed è significativamente $\neq 0$ solo se c'è sovrapposizione fra ψ_a e ψ_b .

Commento sulla forza di "scambio"

Il termine responsabile della forza di scambio è $2\left|\int x\psi_a^*(x)\psi_b(x)dx\right|^2$

ed è significativamente $\neq 0$ solo se c'è sovrapposizione fra ψ_a e ψ_b .

anche se, in linea di principio, bisognerebbe simmetrizzare o antisimmetrizzare la fdo di *tutte le particelle identiche dell'universo* (di un medesimo tipo), l'effetto coinvolge solo particelle sufficientemente vicine. Per particelle identiche ma lontane possiamo pensare che siano distinguibili. (questa è l'origine della dizione "forza di scambio")

Per particelle identiche e vicine l'effetto è rilevante (esempio: struttura atomica, struttura elettronica della materia)

17

Enrico Silva - diritti riservati - Non è permessa, fra l'altro, l'inclusione anche parziale in altre opere senza il consenso scritto dell'autore

Fermioni e bosoni

In natura vi sono due soli tipi di particelle:

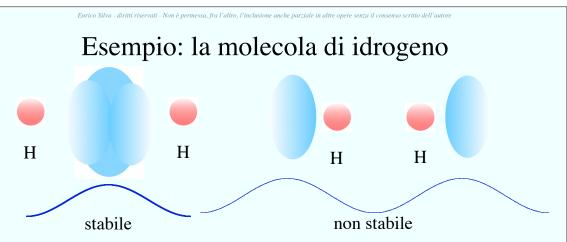
bosoni, fermioni,

che hanno fdo simmetrica che hanno fdo antisimmetrica.

particelle alfa elettrone atomo di He⁴ neutrone protone atomo di He³

spin intero spin semiintero

Attenzione: la simmetria e antisimmetria deve essere pensata non solo relativamente alle coordinate spaziali, ma tenendo conto di tutte le grandezze (p.es. dello spin)



la curva riporta la densità di probabilità (attenzione: modulo quadro!) di una fdo spazialmente simmetrica (sinistra) o antisimmetrica (destra)

Il sistema è stabile se la fdo degli elettroni ha un picco di densità di probabilità nella regione fra i due atomi di H, in maniera che vi sia carica negativa fra i due ioni positivi: la fdo deve essere *spazialmente simmetrica*.

Poiché gli elettroni sono fermioni, la fdo complessiva deve essere *antisimmetrica*, quindi gli spin devono essere opposti nella configurazione stabile.