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A short note on flux lines and flux motion

E. Silva, N. Pompeo, Università Roma Tre

This short note introduces, in a simple form, a few topics on Vortex
motion in Type-II superconductors. It does not replace a book chapter at
all: it should be intended as a guide to the Lectures. An (incomplete) list
of appropriate readings is reported in the Bibliography.
Where symbols are not defined, they refer to commonly intended signifi-
cance. The basics of vortex lines and of an Abrikosov vortex lattice are
assumed to be known. The word “fluxon” and “vortex” will be used inter-
changeably. Please note that ξ indicates here the Ginzburg-Landau coher-
ence length.
Purpose of this Note is to bring to the attention of the student the following
important points:
1. An external current (density) ~J originates a force on the vortices, pro-
portional to J . This force can then set in motion the vortices.
2. Moving fluxons give rise to an electromotive force, revealed by an electric
field ~E.
3. ~E · ~J 6= 0 in general. Thus, moving fluxons determine a net dissipation
in the superconductor.
4. Defects, or in general local depressions of the order parameter |ψ|2, may
pin the vortices, thus hindering vortex motion and ultimately bringing to
(nearly) zero the dissipation.
5. The new dissipationless (pinned) state can be sustained until a maximum
current (density) Jc (depinning critical current density) is reached.
6. A finite Jc (finite pinning) gives rise to irreversible processes in the flux
penetration and exit, and to trapped flux.

1.1 The Abrikosov state

Type II superconductors, identified by values of the Ginzburg-Landau (GL)
parameter1 κ = λ/ξ > 1/

√
2, have a magnetic susceptibility χ > −1 when

1The GL theory, strictly valid near Tc, gives a T−independent κ. Far from Tc, experi-
mental κ acquires a slight temperature variation.
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the applied magnetic field H is Hc1 < H < Hc2, with Hc1 and Hc2 the lower
and upper critical fields, respectively. The flux of the magnetic induction
Φ(B) partially penetrates in the superconductor volume as flux “tubes”,
called fluxons. This behavior can be explained in the framework of the
GL theory: it can be shown that a normal/superconducting interface has
a net energy arising from the difference between magnetic and condensa-
tion energies. These energies vary spatially on the different scales λ and ξ,
respectively, so that in type II superconductors with λ > ξ/

√
2 their net

difference is negative and proliferation of interfaces is energetically favored.
Abrikosov [1] showed that in this “mixed state” a regular distribution of
cylindrical “normal” regions2 with ψ = 0 on the axis, each one carrying a
flux quantum Φ0 = h/(2e) = 2.07 · 10−15 T m2, gave the lowest energy. In
the ideal isotropic material, fluxons are round cylinders with the axis paral-
lel to the externally applied magnetic field and are surrounded by circular
supercurrents, which gave fluxons the alternative name of vortices.

The structure of a single vortex can be determined within the GL frame-
work. We consider an isolated vortex. We use a cylindrical coordinate
frame (r, θ, z) with the z-axis coincident with the fluxon axis. Let ψ∞ the
bulk value of the order parameter. In presence of an interface one has
ψ(r) = ψ∞f(r)eiθ, with f(r) ≈ tanh(r/ξ) [2]. The important point resides
in the vanishing of the order parameter, ψ(0) = 0, along the fluxon axis.
The flux carried by a single fluxon is Φ0 = h/2e, as a consequence of the
simultaneous requirements of flux quantization and maximum number of
interfaces. We stress that a flux line is then a phase structure: the phase
of the order parameter changes by 2π over a circle around the vortex axis.
This property will be important in the following.

For κ� 1 and for r > ξ the field profile is [3]:

B(r) =
Φ0

2πλ2
K0

( r
λ

)
ẑ (1.1)

being K0 the zeroth order Bessel function. For r � λ one has B ∼ e−r/λ.
These profiles are plotted in figure 1.1.

An important quantity is the free energy per unit length εfl, which is
also called the vortex line tension. This quantity can be determined by
considering the kinetic contribution of the vortex supercurrents and the
field energy, and neglecting the condensation energy which involves only the
small area of radius ∝ ξ:

εfl =
µ0

2

∫ [
B(r)2 + λ|∇ ×B(r)|2

]
dS (1.2)

2more correctly, quasiparticle states are excited above the ground (superconducting)
state.
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Figure 1.1: Structure of a single vortex centered in r = 0: ψ(r) and B(r)
profiles, with length scales ξ and λ, respectively.

Using expression (1.1) for the field profile, the above equation yields a free
energy density per unit length [3]:

εfl =
Φ2

0

4πµ0λ2
lnκ (1.3)

The neglected contribution due to the condensation energy lost in the vortex
core changes only slightly the result. One has [3]:

εfl =
Φ2

0

4πµ0λ2
(lnκ+ o(0.1)) (1.4)

where o(0.1) represents a constant of the order of 0.1. Within this framework
the lower critical field Hc1 can be easily determined by equating the energy
cost (per unit lenght) of a fluxon, using εfl from (1.3), with the energy (per
unit length) gained by the appearance of a single vortex at a magnetic field
H = Hc1 [2], equal to Hc1Φ0, yielding:

Hc1 =
Φ0

4πµ0λ2
ln(κ) = Hc

ln(κ)√
2κ

(1.5)

being Hc the thermodynamic critical field which has been defined by the
condensation energy.

The application of field H > Hc1 determines the creation of many vor-
tices that arrange on a regular pattern. Abrikosov identified the possible
regular patterns as square or hexagonal basic unit cells (see figure 1.2), with
intervortex distance aFL equal to [2]:

aFL = a0

√
Φ0

B
, a0 =

{
1 for square cell
4
√

4/3 for hexagonal cell
(1.6)
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Figure 1.2: Square (left panel) and hexagonal (right panel) fluxon lattice,
viewed along a section normal to vortices lattices. Vortex supercurrents are
sketched by round arrows.

The hexagonal (“triangular”) lattice has the lowest energy and gives a stable
configuration, as confirmed by experiments.3 The lattice is found to be
stable against perturbations (“elasticity of the vortex lattice”).

An important point is the effective interactions between vortices. Let
us take two fluxons with their axis parallel to z, and placed at r1 and r2.
The overall energy can be computed through (1.2) using the overall field
B(r − r1) + B(r − r2), with B(r) as in (1.1). The result consists in two
self-energy terms εfl as (1.3) plus the following positive interaction term:

εint =
Φ2

0

2πµ0λ2
K0

(
|r− r1|
λ

)
(1.7)

which corresponds to a repulsive interaction. The symmetry of the Abrikosov
fluxon lattice ensures that the overall J is zero, thus fluxons remain motion-
less. The intervortex interaction also opposes to vortex displacements from
their equilibrium position, giving elastic properties to the Abrikosov lattice.

The magnetic induction profile in the vortex state deserves a short dis-
cussion. In general, if N is the total number of fluxons in the specimen of
cross section S, < B >= NΦ0/S is the average induction, n = N/S is the
areal density of flux lines, taking for simplicity a square lattice one has for
the intervortex spacing:

a '
√

1

n
=

√
Φ0

< B >
(1.8)

When < B >= µ0Hc1 ' Φ0/4πλ
2 (we stress that < B >= µ0Hc1 means

H > Hc1), a ∼ λ, so that the field profiles “touch” themselves. It turns
out that the field profile in the mixed state, unless the applied field is very
close to Hc1, resembles a modulation over an average induction only slightly
smaller than the applied field µ0H (see figure 1.3) is then B ≈ µ0H, apart

3Depending on the temperature range, magnetic field orientation, disorder contribu-
tions and material anisotropy, a square lattice can be also observed.
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a small ripple. However, their cores are still well separated. This is the
so-called London limit.4

B

µ0H

r

Figure 1.3: B(r) resulting from overlapping vortices.

In high κ superconductors, the London approximation is valid in the
great part of the mixed state region (see magnetization curves in figure 1.4).

Figure 1.4: Magnetization curve for type II superconductors, compared with
type I superconductors (from [2]).

By still increasing the applied field, vortex cores eventually overlap and
the sample recovers the normal state. An estimate of the upper critical
field Hc2 ≈ Φ0/(2πξ

2µ0) can be obtained considering vortex cores of section
≈ πξ2 which cover the whole superconductor and give the uniform induc-
tion Φ0/(2πξ

2) = µ0Hc2. An exact calculation gives for Hc2 the following
expression [2]:

4As an important consequence, demagnetization effects due to the geometry are not
relevant in this case since they are confined to H values comparable to Hc1.
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Hc2 =
Φ0

2πµ0ξ2
= Hc

√
2κ (1.9)

1.2 The Lorentz force

We here show that a current exerts a force over a fluxon.
The standard formulation, closely related to the GL theory, starts from

the formulation of the two-vortex interaction energy per unit length. As-
suming the validity of Eq.1.7, the force per unit length exerted by fluxon 2
on fluxon 1 can be obtained by taking the derivative of εint. In vector form
it yields [2]:

fL,21 = J2(r1)×Φ0 (1.10)

where Φ0 is a vector of modulus Φ0, directed along the vortex axis, and J is
the current density of the fluxon 2. For an arbitrary distribution of vortices,
the total force on any vortex results from the sum of all the current densities
(which give a total J on the vortex site):

fL = J×Φ0 (1.11)

This force is called the “Lorentz force” acting on vortices.
A second, macroscopic derivation can be obtained from the Maxwell

equations as follows. Let us consider a flux lattice. The fluxons are oriented
along the positive z axis. A uniform current ~J = Jŷ is passed along the
positive y axis. From ∇× ~B = µ0

~J we get

−∂Bz
∂x

= µ0Jy (1.12)

Thus, a gradient of the induction exists. Such gradient is not due to a contin-
uous field, but to the different density of fluxons: the spacing increases with
increasing x, that is the lattice becomes less and less dense as x increases.
It is intuitive that, like all kind of particles, vortices from the denser region
will move toward the rarified region: this is nothing else than a force on
vortices,5 directed in this specific case along ~x. It is not difficult to be more
quantitative: the density of magnetic energy is u = B2/2µ0. The force per
unit volume over the lattice is then ~Flat = −∇u. In the present case, one
has only the x component:

Flat,x = − 1

2µ0
2Bz

∂Bz
∂x

= BzJy = nΦ0Jy (1.13)

Reinstating all vectors, and distributing the total force equally on each of
the N fluxons, one has again that on a single vortex there exists a force per
unit length given by Eq.(1.11)

5Note that to use the classical argument we had to assume a system of many fluxons.
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1.3 The electric field of moving fluxons

We show here that moving fluxons produce an electric field. We assume that
vortices move with velocity ~v.

The most convincing argument comes from the joint consideration that
(i) fluxons have a phase structure and (ii) when a phase difference φ exists
between two points in a superconductor, the (second) Josephson relation
takes place:

V =
~
2e
φ̇ =

Φ0

2π
φ̇ (1.14)

where φ̇ is the time derivative of the phase difference between two points,
and V is the voltage appearing between the same two points.

Now, consider the phase distribution around a vortex (figure 1.5, upper
panel): the points P1 and P2 experience a variation of their phase difference
φ equal to 2π for each fluxon crossing the line connecting P1 to P2 (figure
1.5, lower panels). Thus, even a single moving fluxon gives rise to a voltage.

Given a fluxon density n = B/Φ0, if fluxons move perpendicularly to the
segment P1P2 of length l with velocity v, the average number of 2π phase
slips in the time interval δt is nlvδt, yielding:

δφ = 2π
B

Φ0
lvδt (1.15)

so that the voltage is:

V =
Φ0

2π

δφ

δt
= Blv (1.16)

and the electric field is E = V/l = Bv. In vector form:

E = B× v (1.17)

which yields the local electric field E “induced” by fluxons moving with
velocity v. A more exhaustive analysis of this treatment can be found in
the specialized literature [5, 6].

We propose also a classical argument [1] that, at the expense of hiding
somewhat the physics behind vortex motion, is extremely simple.

Let us take a vortex lattice, thus a magnetic induction ~B inside the
superconductor. Let vortices be aligned with the z axis, and move along the
positive x axis with velocity ~v. Assume invariance of the reference frame: the
superconducting specimen moves with velocity −~v in the fixed induction ~B.
Thus, perpendicular to the “specimen” motion there exists a Lorentz force
on the charge carriers of charge q: ~FL = q(−~v × ~B), that is an electric field
~E = ~FL/q = −~v × ~B = ~B × ~v.



8 2012

Figure 1.5: Upper panel: phase distribution around a vortex. Lower panels:
phase slip determined by a moving vortex (from [5]).

1.4 Origin of dissipation

Thus, when a current density ~J is passed through the superconductor, on
a single fluxon there exists the force per unit length ~F = ~J × ~Φ0, and the
force per unit volume on the whole lattice ~F = ~J × ~B (the fact that both
forces, dimensionally different, are commonly indicated by the same symbol
and same name - “Lorentz force”, can be confusing). Under the effect of the
Lorentz force, the fluxon(s) can move and they give rise to an electric field
~E ‖ ~J (in the approximations here used). Thus, a finite power dissipation
~E · ~J exists. Before studying the different regimes of fluxon motion, we wish
to qualitatively describe the possible sources of such dissipation [7].

Assume a moving vortex. Consider the following mechanisms.
1. The arising electric field acts on all charge carriers present. In particu-
lar, excitations in the vortex core undergo conventional scattering processes.
Such scattering processes excite phonons, and ultimately give rise to a Joule
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loss.
2. A second process is a nonequilibrium process. Along the path of the
moving fluxon there is a continuous conversion between Cooper pairs to
quasiparticles (at the front of the moving fluxon: Cooper pairs convert to
quasiparticle to enter the fluxon core), and quasiparticles to Cooper pairs
(at the back of the fluxon, where quasiparticles convert back to the conden-
sate when the fluxon moved away). Remember that the ground state is the
superconducting state: it requires a certain energy (that is then absorbed) to
convert Cooper pairs to quasiparticles. By contrast, the recondensation of
quasiparticles into Cooper pairs releases energy (e.g., as heat). If the motion
of the fluxon is slow enough, such processes are equilibrium processes. How-
ever, if the fluxon moves sufficiently fast (with respect to typical relaxation
times), the process at the front of the fluxon (absorption of energy) takes
place in a high magnetic field (the one of the fluxon) and, thus, require less
energy than in zero field. However, the process at the back of the fluxon is
a transition to the ground state in zero field (if the fluxon velocity is high
enough), with the maximum possible energy jump. Thus, more energy is
released than absorbed: this energy must be supplied by the passing current.

1.5 Pinning

In real materials fluxon motion is prevented by the so-called pinning: there
exist pinning sites (to be specified later) that exert an attractive volume
pinning force, Fp, over the lattice. Thus, until F < Fp, the fluxons do
not move and dissipationless regime is restored. As a consequence, with
dc currents and nonzero pinning, a finite resistance appears only for current
densities J greater than a given critical value (the depinning current density)
Jc, defined by F = JcB > Fp.

In general, Jc can depend upon several variables (temperature, magnetic
induction), and can also vary locally.

The origin of the phenomenon of pinning is directly connected with the
concept of condensation energy, and it can be understood as follows. As
we mentioned above, the creation of a vortex requires a certain amount
of energy per unit length, ε. In order to evaluate ε one can proceed as
follows. Let L and A be the thickness and cross-section, respectively, of
the superconducting specimen. To have N fluxons requires the free energy
∆GΦ ≈ NεL = nεAL (sinceN = nA). However, the magnetic energy gained
by the reduction of the expulsion of the magnetic flux is, at Bc1, ∆GB =
ALµ0Hc1∆M = ALHc1nΦ0, where AL is the volume of the specimen, and
∆M = nΦ0/µ0 is the change in magnetization with respect to the Meissner
state. At Hc1, one must have ∆GΦ = ∆GB. Thus ε = Hc1Φ0.

A fluxon is an elongated object: if part of its section crosses a region
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where the condensation energy is already lost (because, e.g., a defect, a non-
superconducting region, or even a microhole), its effective length is reduced
by a certain amount, the loss of condensation energy is smaller, and overall it
is favorable to “sit” over the defect. Since the effective length is reduced, the
fluxon can also tolerate some bending to adapt over several defects (whence
the name “tension” for ε).

As an exercise to the reader, we propose the following questions: assume
a perfectly rigid lattice. Then:
1. Is the lattice pinned by a single defect?
2. Is the lattice pinned by a dense, random distribution of defects?

Finite temperatures can introduce thermally activated processes, giving
rise to the thermally-induced motion of fluxons around their equilibrium
positions (flux creep, thermally activated flux flow). By contrast, in absence
of pinning or for temperatures or driving forces high enough, one has a
steady motion of the vortex lattice (flux flow). For strong pinning, one
can even have important irreversibility phenomena. For some detail on the
dissipative regimes and on the trapped flux phenomena we refer the reader
to the Bibliography (e.g., [9] chapter 8)
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