5-Atomi a due eletroni.
 onigine nel nucler

$$
\begin{aligned}
& H=-\frac{k^{2}}{2 m} \nabla_{1}^{2}-\frac{\hbar_{1}^{2}}{2 m} \nabla_{2}^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{1}}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} R_{2}}+\frac{e^{2}}{4 \pi r_{2} r_{12}} \quad(5.1) \\
& r_{12}=\left|\vec{r}_{1}-\vec{r}_{2}\right|
\end{aligned}
$$

Intruch ciàua le unità atomiche (a. м.), si aissume

$$
m=1, \quad \&=1, e=1,4 \pi \varepsilon \geq 1
$$

in queste unita' le lumphezze soho misuneto ui unita de naggio di Bohn

$$
a_{0}=\frac{4 \pi \varepsilon_{0} t_{1}^{2}}{\mu \theta^{2}}=5.2910^{-11} \mathrm{~m}
$$

Le enugiie simo

$$
E_{m}=-\frac{1}{2} \frac{z^{2}}{n^{2}} \quad \text { a. } u
$$

quinde' per l^{\prime} atomo di iclwogeno

$$
E_{1}=-\frac{1}{2} \quad a, \mu
$$

che comistande a -13.6 eV .
Dalle $(5,1)$ I'equazione di Schnödiñener e'

$$
\left[-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}}\right] \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)(5.2)
$$

In gemerak le truzzone d'onde degh elethau puí defercere auche dell spin quind. eno diferdere' dele gearnca coondiratie $q=(\vec{a}, s)$. Dab ohe i due eletron sen pariticelle ridentiche i rimetate non dfenderenue dull perunténax delle arad ant e velh (5.2) le $\psi\left(\hat{n}_{2}, \hat{n}_{1}\right)$ sara- equivalent all $\psi\left(\tilde{z}_{1}, \vec{a}_{2}\right)$ Posiñur intuchine l'opentered. je muttorizie P_{12} tale de

$$
P_{i 2} \psi\left(a_{1}, q_{2}\right)=\psi\left(a_{2}, q_{1}\right)
$$

L'hamiliominane connuuter om P_{12}

$$
\begin{equation*}
\left[P_{12}, H\right]=0 \tag{3}
\end{equation*}
$$

quindi le cuntifuenzow di H lo sew avoluo of. P,
Ona

$$
P_{12} \psi\left(q_{1}, q_{2}\right)=\lambda \psi\left(a_{1}, a_{2}\right)
$$

ci conreute di liöans sewtivilan'd P_{12} edi
deorn'ficare le me autifunzons, ma

$$
p_{12}^{2} \psi\left(q_{1,2} q_{2}\right)=\lambda^{2} \psi\left(a_{1}, q_{2}\right) \quad(5,5)
$$

e moltre

$$
\begin{equation*}
p_{12}^{2} \psi\left(q_{1}, q_{2}\right)=\psi\left(q_{1}, q_{2}\right) \tag{5,6}
\end{equation*}
$$

quinal:

$$
\lambda^{2}=1
$$

$$
\begin{equation*}
\text { e } \quad \lambda= \pm 1 \tag{5,2}
\end{equation*}
$$

Di convegrenzar le antefurzani di P_{12} ha new la propriet今̀ che

$$
\psi\left(q_{2}, q_{1}\right)= \pm \psi\left(q_{1}, q_{2}\right) \quad(5,8)
$$

Di coureguenze le cuntefurzomid dt ri prowr demificare came simmetrich, er in (5. ρ) vele el segno (t) e curtisimunetriche se val D regnow (-)

Primcipio di esolusare di Panli.
Per sudelistare ì primcijio di eschsache de Reen i_{i}, oghi eletrani, de sche der thunioni, debson avre une tumzioir d'ucb autirinumetrica. In generale

$$
\psi\left(a_{1}, a_{2}\right)=\psi\left(\vec{n}, \overrightarrow{a_{2}}\right) \quad x(1,2)
$$

dove le $x(1,2)$ i'un'auta feemzrore dell spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$
Apartim degl stat de spin "up" $\alpha(i)$ e "ćluwn" $\beta(i)$ f. prow costrmaie dogh centritat dele spin totak.

$$
\vec{S}=\vec{S}_{1}+\vec{S}_{2}
$$

tale che

$$
\begin{array}{ll}
S^{2} \times(1,2)=S(S+1) \times(1,2) & \\
S_{z} \times(1,2)=M_{s} \times(1,2) \quad M_{s}=S, S-1, \ldots,-S
\end{array}
$$

Con $S_{1}=\frac{1}{2}, S_{2}=1 / x \rightarrow S=0,1$
Si- posoh Codtruie dhe stati. Can perite definita
i) Stoito a singuletto, $S=0, n_{s}=0$

$$
\chi_{\infty}(1,2)=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

autisinumetrico
b) s tatidi trijlethe $s=1$

$$
\begin{array}{ll}
X_{1,1}(1,2)=\alpha(1) \alpha(2) & \mu_{s}=1 \tag{5.10}\\
x_{10}(1,2)=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)] & \mu_{s}=0 \\
X_{1,-1}(1,2)=\beta(n \beta(2) & \mu_{s}=-1
\end{array}
$$

S"muaticio

Alla fanzene di singolector va associato mo stabo $\psi\left(\vec{n}_{1}, \vec{n}_{2}\right)$ sinumelri \vec{i}_{0}, mentive quelb di tupleter me itanto contioninuetrico.

$$
\psi\left(q_{1}, q_{2}\right)=\psi_{+}\left(\vec{n}_{1} ; \vec{n}_{2}\right) \chi_{o v}(1,2)
$$

para stat

$$
\psi\left(a_{1}, a_{2}\right)=\psi\left(\vec{r}_{1}, \vec{r}_{2}\right) x_{1, n_{5}}
$$

orthy s tatios

Trminur a al mostus catime a due elethore e al fucbleme dele (5,2).

Modells a eletroui indijendert,
Noll (5,2) Consideriaur il bruine $1 / \pi_{12}$ cone una pertanbazine:

$$
\begin{aligned}
& H_{0}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{1}}-\frac{Z}{R_{2}} \\
& H^{\prime}=\frac{1}{r_{12}}
\end{aligned}
$$

La (5.12) i $H_{0}=H_{1}+H_{2}$ can

$$
H_{i} \psi_{m l m}\left(\vec{n}_{i}\right)=E_{n_{i}}^{(0)} \psi_{m l_{m}}\left(\vec{n}_{i}\right)
$$

quindo le enexgie imptentenbatí soro

$$
E^{(0)}=E_{m_{1}}+E_{n_{2}}=-\frac{Z^{2}}{2}\left(\frac{1}{m_{1}^{2}}+\frac{1}{\mu_{2}^{2}}\right)
$$

in curnisponderze ghi antistacr ime pel lonbati Sanamo prodote. del tifo

$$
\psi^{(0)}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\psi_{m_{1} l_{1} m_{1}}\left(\vec{n}_{x}\right) \psi_{p_{2} l_{2} \mu_{2}}\left(\vec{n}_{2}\right)
$$

dar simuetrizzare of ant-sinumetrizzase
quind.

$$
\begin{array}{r}
\psi_{ \pm}^{(0)}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{m_{1} l_{1} m_{1}}\left(\vec{r}_{1}\right) \psi_{m_{2} l_{2} m_{2}}\left(\vec{r}_{2}\right) \pm\right. \\
\left.\psi_{m_{2} l_{2} w_{2}}\left(\vec{r}_{1}\right) \psi_{n_{1} l_{1} w_{1}}\left(\vec{r}_{2}\right)\right]
\end{array}
$$

quest stati parae orths avzano la steme energis e monento anopolan

$$
\begin{aligned}
\vec{L} & =\vec{L}_{1}+\vec{L}_{2} \quad \text { Gmind } \\
L & =\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots, l_{1}+l_{2}
\end{aligned}
$$

$C_{m} \quad M=-L,-L+1, \ldots,+L$

Caminciono con lo statio fondermentele.

$$
n_{1}=n_{2}=1 \quad l_{1}=l_{2}=0 \quad m_{1}=m_{2}=0
$$

chee detardui 1s 1s. La (t.13) i quinde.

$$
\psi_{0}^{(0)}\left(\vec{r}_{1}, \vec{n}_{2}\right)=\psi_{1 / 5}\left(\vec{n}_{1}\right) \psi_{15}\left(\vec{n}_{2}\right)
$$

c'ésole bo stato para quindi ra cossociato stato dispin x_{0}

D'altra partei due elethan pondw stancen:
numeri quautici n, l, me ugel nob se hame spie opposti e grund $S=0$.

Le fumzare d'chole sjaziable i' quinde.

$$
\begin{align*}
& \psi_{0}^{(0)}\left(\vec{n}_{1}, \vec{n}_{2}\right)=\psi_{1 s}\left(\vec{n}_{1}\right) \psi_{1 s}\left(\vec{n}_{2}\right) \\
& \psi_{15}(\vec{n})=\sqrt{\frac{z^{3}}{\pi}} e^{-z_{12}}\left(a, \mu_{1}\right) \tag{5,14}
\end{align*}
$$

$\operatorname{Con} \quad E_{0}^{(0)}=-z^{2} \quad$ a.m.
Per l'atomu ari the $z=2 \quad F_{0}^{(0)}=-4 a . \mu$. bgani energii a, M. bulk 27.2 eV gruind
$E_{0}^{(0)}=-4 a, \mu_{n} \rightarrow-108.8 \mathrm{eV}$ mentre inl valone Sjerimentale ì -79.0 eV vale a dire -2.90 am .

Queste con franto ci dice quanta nà imponiance l'ineterazovie the ghi eletrai che abrimmo tra scanno.

Bei stati eccitat fi ottongoms quands uno entrambi ge eletromi sno in stat con $a>1$.

Possianus c vere

$$
n_{1}=1, n_{2}=2,3, \ldots(1,2),(1,3) \ldots
$$

qpure

$$
n_{1} \geqslant 2 \quad n_{2} \geqslant 2
$$

$(2,2),(2,3) \ldots$
Si damiticamo seconds ande 1 balone de L cane vecheme... Da motare che th He le ensorgi cen $n_{1} \geqslant 2$, $n_{2} \geqslant 2$ sum nel continuo

$$
\hat{F}_{2,2}^{c+1}=-2\left(\frac{1}{2^{2}}+\frac{1}{2}\right)=-1 a \cdot \mu .
$$

mentre l'enerqui dell ithe $H_{e}{ }^{+}$vale -2 a.e.
L'uggrünta del Cermive refulso from ghe detrom. rende ancona fin' allu l'eneroza $E_{2,2}$.

Qmindi in pratica vanees comadrati nolv ghi stab con $n_{1}=1$ e $a_{2} \geqslant 1$

Gli stati son quindi classifceti in base a L
e som del tipur is $m_{2} l_{2}$ quindi $l_{1}=0$
da mi $L=l_{2}$

$L=0$	1	2	3	4	5
S	P	D	F	G	H

lo spin pesi essere $S=0$ o $s=1$, lo state i indicato $\mathrm{cm}{ }^{2 s+1} L$ cm $2 s+1$ noltuplict Leogli staki di spin.

$$
\begin{aligned}
& \text { 1s } 1 \mathrm{~s}: 1^{1} \mathrm{~s} \\
& \text { is } 2 \mathrm{~s}: \quad 2^{1} \mathrm{~s}, 2^{3} \mathrm{~s} \quad \text { 1s } 2 p: 2^{1} p, 2^{3} p
\end{aligned}
$$

Lo scheme dei livele nell' appromimazicae di elettroni indipendente mostra che i hivelli"sone ad enagea frin' basa di quelle qecimentalin jer l'He.

Negle esperimesti su He le regole di selerime impecliscow tramzioni fran para s orthostat., quindi i hiodl sow separat in para-elioe atho-elis.

Metodo perturbativo.
Stato fondamentale impertarbato

$$
\begin{align*}
& \psi_{0}^{(0)}\left(q_{1}, q_{2}\right)=\psi_{0}^{(0)}\left(\vec{r}_{1}, \vec{r}_{2}\right) x_{00} \\
& H^{\prime}=\frac{1}{r_{12}} \\
& E_{0}^{(1)}=\left\langle\psi_{0}^{(0)}\right| H^{\prime}\left|\psi_{0}^{(0)}\right\rangle \tag{5.15}\\
& \left.E_{0}^{(1)}=\int\left|\psi_{15}\left(r_{1}\right)\right|^{2} \frac{1}{r_{12}}\left|\psi_{15}\right| r_{2}\right)\left.\right|^{2} d \vec{r}_{1} d \vec{r}_{2}
\end{align*}
$$

e'cane l'interazone fro due caviche eletromiche.

$$
\begin{aligned}
& E_{0}^{(1)}= \int d r_{1} r_{1}^{2} \int d r_{2} r_{2}^{2} \frac{z^{3}}{\pi} e^{=2 Z r_{1}} \frac{z^{3}}{\pi} e^{-2 Z r_{2}} . \\
& \int d \Omega_{1} \int d \Omega_{2} \frac{1}{\left|\bar{R}_{1}-\vec{r}_{2}\right|}= \\
&=\frac{Z^{6}}{\pi^{2}} \int_{0}^{\infty} d r_{1}-r_{1}^{2} \int_{0}^{\infty} d r_{2} r_{2}^{2} e^{-2 Z\left(r_{1}+r_{2}\right)} \\
& \cdot \int d \Omega_{1} \int d \Omega_{2} \frac{1}{\left|\vec{n}_{1}-\vec{r}_{2}\right|}
\end{aligned}
$$

useáur lo sviluppo

$$
\frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4 \pi}{2 l+1} \frac{\left(r_{<}\right)^{l}}{\left(r_{>}\right)^{l+1}} y_{l_{m \mu}}^{*}\left(\theta_{1}, \varphi_{1}\right) y_{l_{m}}\left(\theta_{2}, \varphi_{2}\right)
$$

dove $r_{k}=\min \left(\left|r_{1}\right|,\left|r_{2}\right|\right), r_{3}=\max \left(\left|r_{1}\right|,\left|r_{2}\right|\right)$

$$
\begin{aligned}
E_{0}^{(\prime)}= & \frac{Z^{6}}{\pi^{2}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4 \pi}{2 l+1} \int_{0}^{\infty} d r_{1} r_{1}^{2} \int_{0}^{\infty} d r_{2} r_{2}^{2} . \\
& e^{-2 Z\left(r_{1}+r_{2}\right)} \frac{\left(r_{s}\right)^{l}}{\left(r_{3}\right)^{l+1}} \cdot \\
& \int d \Omega_{1} \int d \Omega_{2} Y_{l}^{l / m}\left(v_{1}, \varphi_{1}\right) Y_{l m}\left(\theta_{2} \varphi_{2}\right)
\end{aligned}
$$

buto che $y_{00}=\frac{1}{\sqrt{4 \pi}}$ i'tanle vedur ah

$$
\begin{aligned}
& 4 \pi \int d \Omega_{1} y_{l m}^{0}\left(\theta_{1}, \varphi_{1}\right) Y_{00} \int d \Omega_{2} y_{00} y_{l, m}\left(\theta_{2}, \varphi_{2}\right) \\
& =r \pi \delta_{l_{0} J_{m 0}}
\end{aligned}
$$

quined

$$
\begin{aligned}
& F_{0}^{(1)}=\frac{\mathbb{Z}^{6}}{\pi^{2}} \sum_{l=0}^{\alpha} \sum_{n=-l}^{l} \frac{(4 \pi)^{2}}{2 l+1} \int_{0}^{\infty} d r_{1} n_{1}^{2} \int_{0}^{\alpha} d s_{2} r_{2}^{2} \\
& e^{-Z\left(r_{1}+r_{2}\right)} \frac{\left(r_{c}\right)^{l}}{\left(r_{2}\right)^{l+1}} \delta_{0} \delta_{m_{0}} \\
& E_{0}^{1} \equiv 16 z^{6} \int_{0}^{\infty} \frac{d r_{1} r_{1}^{2}}{\int_{0}^{\alpha}} d r_{2} r_{2}^{2} e^{-z\left(a_{1}+r_{2}\right)} \frac{1}{r_{>}} \\
& R_{7}=\max \left(\left|n_{1}\right|,\left|R_{2}\right|\right) \\
& E_{0}^{(1)}=16 z^{6} \int_{0}^{\infty} d n_{1} s_{1}^{2} e^{-2 z_{n_{1}}} \text {. } \\
& \cdot\left[\int_{0}^{r_{1}} d r_{2} r_{2}^{2} e^{-2 Z R_{2}} \frac{1}{r_{1}}+\int_{R_{1}}^{\alpha} d r_{2} r_{2}^{2} e^{-2 z R_{2}} \frac{1}{r_{2}}\right] \\
& =16 Z^{6}\left\{\int_{0}^{\infty} d n_{1} r_{1} e^{-z z_{1}} \int_{0}^{r_{1}} d r_{2} r_{2}^{2} e^{-z Z r_{2}}\right. \\
& \left.+\int_{0}^{\infty} d r_{1} r_{1}^{2} e^{-2 Z r_{1}} \int_{p_{1}}^{\alpha} d r_{2} r_{2} 2^{-2 Z r_{2}}\right\} \\
& x=2 Z r_{2} \quad d x=2 Z r_{2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{0}^{\prime \prime}=16 Z^{6}\left\{\int_{0}^{\infty} \frac{r_{2}, r_{1} e^{-2 Z r_{1}} \frac{1}{(2 Z)^{3}} \int_{0}^{2 Z r_{1}} d x x^{3} e^{-x}}{(2)}\right. \\
& \left.+\int_{0}^{\infty} d n_{1} n_{1}{ }^{2} e^{-2 z n_{1}} \frac{1}{\left(2 z y^{2}\right.} \int_{2 Z n_{1}}^{\infty} d x \times e^{-x}\right\} \\
& y=2 Z z_{1} \quad d_{y}=2 Z R_{1} \\
& E_{0}^{1}=16 z^{6}\left\{\frac{1}{(2 z)^{5}} \int_{0}^{\infty} d y y e^{-y} \int_{0}^{y} d x x^{2} e^{-x}\right. \\
& \left.+\frac{1}{(2 z)^{5}} \int_{0}^{\infty} d y y^{2} e^{-y} \int_{y}^{\infty} d x x e^{-x}\right\}
\end{aligned}
$$

$$
\begin{aligned}
F_{0}^{(1)}= & \frac{z}{2}
\end{aligned}\left\{_{0}^{\infty} d y y e^{-y} \int_{0}^{\infty} d x x^{2} e^{-x}\right\}
$$

$$
\begin{aligned}
& \int_{0}^{4} d x x^{2} e^{-x}=2-e^{-5}\left[y^{2}+2 y+2\right] \\
& \int_{y}^{\infty} d x x e^{-x}=e^{-y}[y+1]
\end{aligned}
$$

$$
\begin{align*}
& \langle\hat{K}\rangle=\frac{Z_{\text {eHf }}^{3}}{\pi} 4 \pi \int_{0}^{\infty} d r n^{2} e^{-Z_{\text {Q }}+r}\left(-\frac{\nabla^{2}}{2}\right) e^{-Z_{0} \phi \|} \\
& =2 Z_{l k}^{3} \int_{0}^{\alpha} d r r^{2} e^{-z_{k t F^{2}} r}\left[\frac{2}{2} z_{2 H} e^{-z_{k k^{2}}}-z_{d j \leqslant}^{2} e^{-z_{0 H} H^{2}}\right] \\
& =2 Z_{a H}^{3}\left\{2 Z_{s, t} \int_{0}^{\infty} d r r e^{-2 Z_{i H} H^{2}}-Z_{o H t}^{2} \int_{0}^{\infty} d r r^{2} e^{-2 z_{\text {ets }} r}\right\} \\
& x=2 Z_{k j, r} n \\
& \int_{0}^{\infty} d r z e^{-2 z_{\text {ext }} 2}=\frac{1}{4 z_{\text {olt }}^{2}} \int_{0}^{\infty} d x x e^{-x}=\frac{1}{4 z_{04 t}^{2}} \\
& \int_{0}^{\infty} d r r^{2} e^{-2 z_{q / 2}{ }^{2}}=\frac{1}{8 z_{s / f}^{3}} \int_{0}^{\infty} d x x^{2} e^{-x}=\frac{2}{8 z_{s, t}^{3}} \\
& \langle\hat{k}\rangle=2 z_{o f f}^{3}\left\{\frac{1}{2 z_{a H}}-\frac{1}{k z_{\text {si }}}\right\}=\frac{1}{2} z_{o f t}^{2} \\
& \left\langle\hat{k}_{1}\right\rangle+\left\langle\hat{k}_{2}\right\rangle=Z_{\text {eff }}^{2} \tag{5.23}
\end{align*}
$$

Vediamo il tormine col plenzicle

$$
\begin{aligned}
& \langle V\rangle=\frac{Z_{i, t t}^{3}}{\pi} 4 \pi \int d r r^{2} e^{-2 z_{r, f} 2}\left(-\frac{Z}{r}\right) \\
& =4 Z_{\text {eHf }}^{3} Z \int_{0}^{\infty} d / 2 e^{-2 Z_{e H H^{2}}}= \\
& =-Z Z_{\text {aff }}^{3} \frac{1}{Z_{\text {ett }}^{2}} \int_{0}^{\infty} d x \times e^{-x}=-Z Z_{\text {Q Ht }} \quad(5.24) \\
& \left\langle k_{1}+k_{2}+v_{1}+v_{2}\right\rangle=z_{\text {Qtt }}^{2}-2 Z Z_{\text {eff }} \quad \text { (5.25) }
\end{aligned}
$$

Il ton wime

$$
\langle\phi| \frac{1}{\left|\vec{n}_{1}-\vec{r}_{2}\right|}|\phi\rangle
$$

é stato calcola to grià col termine jertur bativo e abbiamu

$$
\langle\phi| \frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}|\phi\rangle=\frac{5}{8} Z_{e f f} \quad(5.26)
$$

$Q_{\text {mindo }}$

$$
E=z_{\text {eff }}^{2}-2 Z z_{\text {eft }}+\frac{5}{8} z_{\text {ety }} \quad(5.27)
$$

Si pro' scrivere la funzione d'onde di prova dello stato fundamentale come

$$
\begin{equation*}
\phi\left(r_{1}, r_{2}\right)=\frac{z_{\text {eff }}^{3} e^{-z_{\text {eff }}\left(r_{1}+r_{2}\right)}}{\pi} \tag{5.20}
\end{equation*}
$$

due è stats intwodoto il panametro $Z_{\text {eft }}$
$\operatorname{La}(5.20)$ cessume nuo stato isis

$$
\psi\left(n_{1}, n_{2}\right)=\psi_{15}\left(n, \psi_{15}\right.
$$

can

$$
\psi_{1 /}(r)=\left(\frac{z_{Q H f}^{3}}{\pi}\right)^{1 / 2} e^{-z_{Q H}}{ }^{12}
$$

da cui sit vede che $\langle\phi \mid \psi\rangle=1$
Dobbiamo minimizzare il funzionale

$$
\begin{gather*}
E[\phi]=\langle\phi| H|\phi\rangle \\
E=\langle\phi|\left(-\frac{V_{1}}{2}-\frac{Z}{R_{1}}\right)|\phi\rangle+\langle\phi|\left(-\frac{V_{2}}{2}-\frac{Z}{R_{2}}\right)|\phi\rangle \\
+\langle\phi| \frac{1}{\left|\vec{r}_{1}-R_{2}\right|}|\phi\rangle \tag{5.22}
\end{gather*}
$$

Vedianno l tonmine di energáa cinetica

$$
\begin{aligned}
& \langle\hat{k}\rangle=\int d \vec{r} \cdot \psi_{T S}(2)\left(-\frac{V^{2}}{2}\right) \psi_{r s}(r) \\
& =\int_{0}^{\alpha} d z R^{2} \int d \Omega \quad \psi_{s s}(2)\left(-\frac{\nabla^{2}}{z^{-}}\right) \psi_{t s}(\Omega) \\
& \nabla^{2}=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{L^{2}}{r^{2}} \\
& L^{2} \psi_{1-5}(2)=0 \\
& \nabla^{2} \psi(n)=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}} n \psi=\frac{1}{2} \frac{\partial}{\sqrt{2}}\left[\psi+r \frac{\partial \psi}{\partial z}\right] \\
& =\frac{1}{2}\left[\frac{\partial \psi}{\sqrt{2}}+\frac{\partial \psi}{\partial z}+2 \frac{\partial^{2} \psi}{\partial_{2}^{2}}\right]=\frac{2}{2} \frac{\partial \psi}{\partial_{2}}+\frac{\partial^{2} \psi}{\partial_{2}{ }^{2}} \\
& \psi=e^{-z_{R H} r^{2}} \quad \frac{\partial \psi}{\partial R}=-z_{s f=1} e^{-z_{\text {eH }}{ }^{2}} \\
& \frac{\partial^{2}}{\partial z^{2}} \psi=Z_{\partial f \mu}^{2} e^{-Z_{a+t}{ }^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{0}^{(1)}=\frac{Z}{2}\left\{\int_{0}^{\infty} d y y e^{-4}\left[2-e^{-4}\left(y^{2}+2 y+2\right)\right]\right. \\
& \left.+\int_{0}^{\infty} d y y^{2} e^{-4} e^{-4}[y+1]\right\}= \\
& =\frac{Z}{2}\left\{2 \int_{0}^{\alpha} d y y e^{-y}-\int_{0}^{\alpha} d y e^{-25}\left[y^{2}+2 y\right]\right\} \\
& \int_{0}^{\infty} d y y e^{-y}=1 \\
& \int_{0}^{-20} d y e^{-2 y} y^{2}=\frac{1}{4} \\
& \int_{0}^{6} d y e^{-2-y}(2 y)=\frac{1}{2} \\
& E_{0}^{(1)}=\frac{z}{2} \cdot \frac{5}{4}=\frac{5}{8} z \quad \text { a.m } \quad(5 \cdot 17)
\end{aligned}
$$

quind

$$
E_{0}=E_{0}^{(0)}+E_{0}^{(1)}=-Z^{2}+\frac{5}{8} Z \quad a \cdot \mu . \quad(5 \cdot 18)
$$

He: $F_{0}=-2.750 \quad a_{1} \mu \quad\left(E^{\text {en }}=-2.904\right)$

Metodo vanúzionule.
Robbiäno cencare una turzraixe d'ouda con perametri do a' cen sentor di effectuare una groceduna variaztionule, der una funserere ϕ i' costruise it truracrable

$$
E[\phi]=\frac{\langle\phi| H|\psi\rangle}{\langle\phi \mid \psi\rangle}
$$

da minimizzare, l'evergaí vera İ sona'

$$
E_{0} \leq\left. E[\phi]\right|_{\min }
$$

Cousidenicur le mostra hamiltonviama

$$
\begin{equation*}
H=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{z}{r_{1}}-\frac{z}{n_{2}}+\frac{1}{r_{12}} \tag{5.19}
\end{equation*}
$$

Nell scegliene le turziens d'onde di prowa sifour temer conto dell' effetto dischenuw di un elathare sulle cavica nucleare. Ogmin eletronce ade sede wh Cance $Z e$ ma una carice sinferive per effette dell scher mo delt'altro eletrane.

$$
\left.\frac{\partial E}{\partial Z_{\text {QHf }}}\right|_{\text {min }}=0 \quad \Rightarrow \quad 2 Z_{\text {RH }}-2 Z+\frac{5}{\xi}=0
$$

da cmi $\quad Z_{\text {eft }}=Z-\frac{5}{16} \quad\left(N B_{1} Z_{\text {off }}<Z\right)$
quindi la (5.27) aida'

$$
\begin{equation*}
E=-\left(z-\frac{5}{16}\right)^{2} \tag{5,28}
\end{equation*}
$$

Pa He

$$
E=-\left(2-\frac{5}{16}\right)^{2}=-2.848 \text { a. u. }
$$

der confrontare cath $\quad E_{0}^{k \times 0}=-2.904$ u. a.
Ottemiams un risultat mighoore rispete alle terie pertunhativa, V, B, $\frac{1}{2} a, n \rightarrow 13.6 \mathrm{eV}$

$$
\begin{aligned}
& E_{0}^{(0)}=-108.8 \mathrm{eV} \quad\left(E_{a}^{(0)}=-(13.6) 2 Z^{2} \mathrm{eV}\right) \\
& E_{0}=E_{0}^{6 T}+E^{(1)}=+27.2\left(-Z^{2}+\frac{5}{8} Z\right) \rightarrow F_{0}^{1 R 2 T}=-74.8 \mathrm{eV} \\
& E_{V a R}=-27.2\left(Z-\frac{5}{16}\right)^{2} \rightarrow F_{V A R}^{\prime}=-77.36 \mathrm{eV} \\
& E_{E X R}=-78.88 \mathrm{eV}
\end{aligned}
$$

Stati eccitati degli a tormi a duo eletromi.
Consideriamo stat-eccitati che mon somo net contion, quindi livelli del tpo 1 sml . un elctione in is e l'altw eccitatad un livellon l. Useremo la teron jeutarbativa, cm

$$
\begin{aligned}
& H=H_{0}+H^{\prime} \quad \text { e } H^{\prime}=\frac{1}{r_{12}} \\
& H_{0}=-\frac{V_{1}^{2}}{2}-\frac{Z}{2}-\frac{\nabla_{2}^{2}}{2}-\frac{Z}{R_{2}}
\end{aligned}
$$

Le frureson' d'onch imjerturhate sero quindi.

$$
\psi_{ \pm}^{(0)}\left(\vec{n}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{1 s}\left(\vec{r}_{1}\right) \psi_{n l_{m}}\left(\vec{r}_{2}\right) \pm \psi_{m l_{m}}\left(\vec{r}_{1}\right) \psi_{1 s}\left(\vec{r}_{2}\right)\right]
$$

Con enerequä impentunbutà

$$
\begin{equation*}
E_{1, n}^{(0)}=-\frac{Z^{2}}{2}\left(1+\frac{1}{n^{2}}\right) \tag{5.30}
\end{equation*}
$$

Ψ_{t} e hanuo la stersa enhegie quando H^{\prime} e^{c} trascunat.

Nell'apphcare la tema dell perturbazoù temamer conto che fer H^{\prime} pussianuo usan lo svileppu (5.16)

$$
\frac{1}{\left|\vec{n}_{1}-n_{z}\right|}=\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} \frac{4 \pi}{2 l+1} \frac{\left(n_{<}\right)^{l}}{\left(n_{n}\right)^{l+1}} Y_{l m}^{\infty}\left(\theta_{1}, \varphi_{l}\right) y_{l m m}\left(\theta_{2}, \varphi_{2}\right)^{(5,31)}
$$

quindi H^{\prime} Sana dirgonule negli stati $\left.|m| m\right\rangle$,
imoline clats che $\left[H ; P_{12}\right]=0$

$$
\left\langle\psi_{+}\right| H^{\prime}\left|\psi_{-}\right\rangle=0
$$

Dalla (5.29) abbiàmo

$$
\begin{aligned}
& E_{ \pm}^{\prime \prime}=\frac{1}{2}\left[\left(\left\langle 1 s, n l_{m}\right| \pm\left\langle n l_{m}, 1 s\right|\right) H^{\prime}(|1 s, n \ell m\rangle \pm|n l m, 1 s\rangle)\right] \\
& =\frac{1}{2}\left[\left\langle 1 s, n \ell_{m}\right| H^{\prime}\left|1 s, n l_{m}\right\rangle+\left(n l_{m}, 1 s\left|H^{\prime}\right| m l_{m}, 1 s\right\rangle\right. \\
& (1)
\end{aligned}
$$

$$
\frac{\left.\left. \pm\langle 1 s, m \ell m| H^{\prime}|n l m, 18\rangle \pm\langle n l m,| s|H| 1 s, n l m\right\rangle\right]}{(4)}
$$

Si vede che

$$
(1)=(2) \quad(3)=(4)
$$

(17):

$$
J_{m l}=\int d \vec{n}_{1} \int d_{\vec{v}_{2}}\left|\psi_{1 S}\left(n_{1}\right)\right|^{2} \frac{1}{r_{12}}\left|\psi_{n l m}\left(\vec{n}_{2}\right)\right|^{2}
$$

(3):

$$
\begin{align*}
& K_{m l_{m 1}}=\int d \vec{r}_{1} \int d \vec{r}_{2} \psi_{1 s}^{*}\left(\vec{n}_{1}\right) \psi_{m l_{m}}^{*}\left(\vec{r}_{2}\right) \frac{1}{2_{22}} \psi_{m l_{m m}}\left(\vec{r}_{1}\right) \psi_{15}\left(\vec{r}_{2}\right) \\
& E_{ \pm}^{(11}=J_{m l_{m}} \pm K_{m l_{\text {mam }}} \tag{5.32}
\end{align*}
$$

$J_{\text {mlme }}$ è detto tonmine coulombiaino od wetto
$K_{m i n}$ à dette tenmine di scambru

Ter calculare $J_{\text {whm }}$ e $K_{\text {nden }}$ bisigma imperine lo surilappo (5.31) meghi intigue.

Nelh sureppe (5.31) ui sancimo Enmime che rivdichà uno came

$$
Y_{l^{\prime} m_{1}^{\prime}}^{x}\left(\Omega_{1}\right) Y_{l^{\prime} m^{\prime}}\left(\Omega_{2}\right)
$$

quinde in Tom avzeun de intignax

$$
\begin{aligned}
& \int d \Omega_{1} \int d \Omega_{2} y_{00}^{0}\left(\Omega_{1}\right) y_{00}\left(\Omega_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int d \Omega, Y_{00}^{*}\left(\Omega_{1}\right) Y_{00}\left(\Omega_{1}\right) y_{\rho^{\prime} \mu^{\prime}}^{*}(\Omega,) . \\
& \int d \Omega_{2} Y_{l / m}^{d}\left(\Omega_{2}\right) Y_{l / m}\left(\Omega_{2}\right) y_{l_{m}^{\prime}}^{\prime}\left(\Omega_{2}\right) \\
& =\frac{1}{\sqrt{1 \pi}} \delta_{1^{\prime} 0} \partial_{m^{\prime} 0} \cdot \int d \Omega_{2} Y_{1 \mathrm{~m}}^{+}\left(\Omega_{2}\right) Y_{1 / \mathrm{ma}}\left(\Omega_{2}\right) \eta_{j_{1 m}}\left(\Omega_{2}\right) \\
& J_{n \neq m}=\int d n_{1} n_{1}^{2} \int d n_{2} n_{2}^{2} R_{10}^{2}\left(n_{1}\right) R_{n l}^{2}\left(n_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\int d n_{1}^{2} n_{1}^{2}\right] d n_{2} n_{2}^{2} R_{10}^{2}\left(n_{1}\right) R_{m l}^{2}\left(n_{2}\right) . \\
& 4 \pi \frac{1}{r_{7}} \frac{1}{\sqrt{4 \pi}} \int d \Omega_{2} y_{l m}^{\infty}\left(\Omega_{2}\right) y_{l m}\left(\Omega_{2}\right) y_{d o}\left(\Omega_{2}\right) \\
& \left(N \cdot R_{2} Y_{00}(\Omega)=\frac{1}{\sqrt{\sqrt{4}}}\right)
\end{aligned}
$$

quinchi Jom non cijelede de me vale

$$
J_{n l}=\int_{0}^{\infty} d n_{k} r_{k}^{2} R_{n l}^{2}\left(n_{2}\right) \int_{0}^{\infty} d n_{1} n_{1}^{2} R_{10}^{2}\left(n_{1}\right) \frac{1}{R_{>}}
$$

Per $K_{m p m}$ abbiame

$$
\begin{aligned}
& \int d \Omega_{1} Y_{\sigma}^{\alpha}\left(\Omega_{1}\right) Y_{\ell m}\left(\Omega_{1}\right) Y_{l^{\prime} \mu^{\prime}}^{\infty}\left(\Omega_{1}\right) \\
& \cdot \int d \Omega_{2} y_{\mathrm{lm}}^{\mathrm{k}}\left(\Omega_{2}\right) Y_{00}\left(\Omega_{2}\right) y_{\text {l/m }}\left(\Omega_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& K_{n \lambda}=\frac{1}{2 \ell+1} \int_{0}^{\infty} d n_{2} n_{2}^{2} R_{10}\left(n_{2}\right) R_{n l}\left(n_{2}\right) . \\
& \int_{0}^{\infty} d n_{1} n_{1}{ }^{2} R_{n d}\left(n_{1}\right) R_{m l}\left(n_{1}\right) \frac{\left(n_{<}\right)^{l}}{\left(n_{3}\right)^{l+1}}
\end{aligned}
$$

$$
\begin{array}{ll}
E_{n l, \pm}^{(1)}=J_{n l} \pm K_{m l} \quad(+1 \rightarrow S=0 \\
& (-1 \rightarrow S=1
\end{array}
$$

$$
J_{m l}>0 \quad k_{m l}>0
$$

I livelli energetici quindi sumu

$$
E=-\frac{Z^{2}}{2}\left(1+\frac{1}{n^{2}}\right)+J_{m l}+K_{m l}
$$

caso $m=2$

Il livell is $2 p$ ì fin' estenmo e risento memo della canica nucleane, che ì pim schermata.

I livell di tripletto $S=1$ hammo envenúprint bassa
di qualli d singuleto $S=0$, puch?

$$
2 K\left\{\begin{array}{l}
\frac{1 \downarrow}{1} \quad S=0 \rightarrow \psi_{+} \text {. simmetrica } \\
1 \uparrow \quad S=1 \rightarrow \psi_{0} \text { amtisimmetrice }
\end{array}\right.
$$

Lu ψ si ammulle in $\overrightarrow{r_{1}}-\vec{r}_{2}=v$
 eletinomi it non si poscuo ubvicimare queste abbura lá equelsione couloumina

Th $\psi_{t} \quad$ l'energiè ípin' altoc perstab
 fiunmetrio spazivele

La (5.33) si jui anche riscuvere consieterando

$$
\begin{aligned}
& 2 \vec{S}_{1} \cdot \vec{S}_{2}=S^{2}-\left(S_{1}^{2}+S_{2}^{2}\right) \\
& \vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{2} S^{2}-\frac{3}{4}
\end{aligned}
$$

Con $S=0 \quad \bar{S}_{1} \cdot \bar{S}_{2}=-\frac{3}{4}, \quad$ con $S=1 \quad \vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{4}$
quindi

$$
E_{m l}^{(1)}=J_{n l}-\frac{1}{c}\left(1+4 \bar{S}_{1} \cdot \vec{S}_{2}\right) K_{n l}
$$

Nota sull' enagia.
Atmo di velvogemo $(Z=1): E_{m}=-\frac{1}{2 m^{2}}\left(\frac{e^{2}}{\hbar \pi}\right) \frac{\mu}{\hbar_{n}^{2}}$

$$
\begin{gathered}
E_{1}=-13.6 \mathrm{eV} \\
E_{m}=-13.6 \frac{1}{\mathrm{~m}^{2}}
\end{gathered}
$$

in unile atemich

$$
\begin{aligned}
& E_{1}=-\frac{1}{2} a . \mu_{1} \rightarrow \frac{1}{2} a .4 \rightarrow 13.6 \mathrm{eV} \\
& 1 a \cdot u=27.2 \mathrm{eV} \\
& \text { Per } z \text { gemuico } \\
& E_{m}=-13.6 \frac{Z^{2}}{\mathrm{~m}^{2}} \mathrm{eV} \\
& E_{m}=-\frac{Z^{2}}{2 m^{2}} \text { a.u. } \\
& \text { In Grmimi difnquenze } \\
& T_{2} \mathrm{~V}=8065.38 \mathrm{~cm} \\
& \nu_{a b}=R\left(\frac{1}{n_{a}^{2}}-\frac{1}{m_{b}^{2}}\right) \\
& R=109677.58 \operatorname{len}^{-1} \text { (Esperment) }
\end{aligned}
$$

Alomia due eletinomi

$$
E_{m_{1}, m_{2}}^{\left(\overline{m_{2}}\right.}=-\frac{Z^{2}}{2}\left[\frac{1}{m_{1}^{2}}+\frac{1}{m_{2}^{2}}\right] \quad a a_{0} \rightarrow-13.6 z^{2}\left[\frac{1}{m_{1}^{2}}+\frac{1}{m_{2}^{2}}\right]
$$

$\frac{1}{2}$ courstande a 13.6 eV

Stati eccitati con $n_{1}>1$,
Glistati ditifo 2s2s, $2 s 2 p$ etc son immers:
mel continus.
Pen He con $Z=2$ l'energiè d' iönizzazune ele un elettrone
vale

$$
\begin{aligned}
& E_{I}^{(0)}=\lim _{m_{2} \rightarrow \infty}\left[-\frac{Z^{2}}{2}\left(1+\frac{1}{m_{2}}\right)\right]=-\frac{Z^{2}}{2} a \cdot \mu . \\
& 1 s 1 s \rightarrow H_{e}^{+}+e^{-} \quad H_{e}^{+} i_{i n} 1 s e^{-} \text {con o luagei cinalice } \\
& E_{I}^{(0)}=-2 a, \mu . \rightarrow E_{7}^{(0)}=-54.4 \mathrm{eV}
\end{aligned}
$$

L'eneroni di-idrizezare ìt limut delle enerogie nel
cantinuse Cornisfonde al livell di Het (AS).
L'energion dellv sluto $252 s$, il fime basso
in levergia di'guell' Con $M_{1} \geq 1$ vale

$$
\begin{aligned}
& F_{2,2}^{(0)}=-\frac{Z^{2}}{2}\left(\frac{1}{4}+\frac{1}{4}\right)=-\frac{1}{4} Z^{2} a_{1 \mu} . \\
& E_{2,2}^{(0)}=-1.0 a \cdot \mu . \rightarrow E_{2,2}^{(0)} 2-27.2 \mathrm{eV}
\end{aligned}
$$

prindi si-t rova nel cantinur sop rae Het^{+}(1ss $+e^{-}$

La perturhaziai dell regulrione coudentriane alza amener difiri questo livelh; Commape ia ì valai. Serimentali rimame le stessa sitaadime.

Dello states forchementale di He si frio ecentore l'aterus Cm rachízive UV e pentanlo peer exmpio à ($252 p$) $2^{1} p$ Unisto stato puit de ca dere cur lni mow de nadi=inave me pranioum anche anver men tranzo-one cor ronitrazare e ruza bumone, detto effecto Anger

F' un procezo el.
autaicmizrazame

Questa trawsizacie ha mes probabetio pris alts diquela cm rechizane.

6.5 (a) The energy spectrum given by expression $[6.32]$ with $Z=2$. The levels are labelied by $\left(n_{1}, n_{2}\right)$.
(b) The energy spectrom of Inelium.

6.2 The experimental values of the lowest energy levels of hehium. The energy scale is chosen so that $E=0$ corresponds to the ionisation threshold. The configuration of each level is of the form Is $n l$. The doubly excited states (for example $2 \mathrm{~s} n l$) are at positive energies on this scale, within the $\mathrm{He}^{+}(1 \mathrm{~s})+\mathrm{e}^{-"}$ continuum.

