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Università degli Studi “Roma Tre”, and CNISM

via della Vasca Navale,

84; 00146 Rome, Italy

(Dated: January 26, 2010)

We develop an electromagnetic analysis for partially correlated thin annular

sources. The elements of the correlation matrix are assumed to depend only

on the angular distance between two typical points. For any such source, we

show how the modal expansion can be found. Correlation changes upon free

propagation are discussed. Further, examples and possible synthesis schemes

are presented.

c© 2010 Optical Society of America

OCIS codes: 030.1640, 260.5430, 030.4070

1



1. Introduction

This is the second in a series of two papers in which we find the modal expansions for a

class of partially correlated thin annular sources. In the first paper [1] we have developed

the scalar treatment based on the use of the mutual intensity [2] while the extension to the

electromagnetic case will be discussed in the present paper.

Diffraction-free and J0-correlated fields epitomize the type of radiation emitted by a thin

annular source under coherent and incoherent illumination, respectively [3, 4]. In the first

paper [1] (dealing with scalar sources), it was shown that these fields constitute limiting

cases of beams generated by a more general class of annular sources with partial correlation.

Under the hypothesis of angularly shift-invariant correlation functions, the modal expansion

for such sources was found and it allowed us to study in a simple way how the correlation

properties of the fields radiated by them change upon propagation. Possible experimental

procedures for synthesizing scalar shift-invariant correlation functions along the annulus

were also proposed.

In recent years, there has been an increasing interest in correlation properties of vectorial

optical sources [5–28]. Here, we will extend the analysis of Ref. 1 to the case of vectorial

sources and discuss correlation properties of electromagnetic annular sources, concentrating

our attention on the angular dependence of the correlation functions. For describing the

vectorial spatial correlation properties we shall make use of the beam coherence-polarization

(BCP) matrix [6, 7]. A formally equivalent treatment could be performed in the space-

frequency domain by means of the so-called CSD matrix [14, 30].

Analogously to their scalar counterparts, the class of fields produced by annular sources

of the the kind considered here embraces, as limiting cases, perfectly coherent diffraction-

free beams and J0-correlated electromagnetic secondary sources [25]. In their most general

form, vectorial partially coherent thin annular sources can be used as the starting point for

the synthesis of electromagnetic partially coherent diffraction-free beams [28].

This work is arranged as follows. In Section 2 we will show that the modal analysis

[15, 16] of electromagnetic angularly shift-invariant sources can be accomplished by means

of elementary Fourier analysis. Changes in the vectorial correlation properties of the field

radiated by the annular source in free-space propagation will be analyzed in Section 3.

Furthermore, some relevant examples are considered and possible experimental procedures

for synthesizing shift-invariant BCP matrices along the annulus are proposed in Sections 4
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and 5, respectively. Main results will be summarized in the last section.

2. Modal analysis of angularly shift-invariant sources

Let us recall that the BCP matrix, to be denoted by Ĵ , is a 2×2 matrix, whose elements

Jαβ(ρ1,ρ2, z), (α = x, y; β = x, y), are given by [6, 7]

Jαβ(ρ1,ρ2, z) = 〈Eα(ρ1, z, t)E
∗
β(ρ2, z, t)〉, (1)

where Eα(ρ, z, t) is the fluctuating α-component of the electric field at transverse position

ρ, longitudinal coordinate z, and time t. The angular brackets stand for a temporal average.

When ρ1 = ρ2 the BCP matrix reduces to the (local) polarization matrix [30].

With the aim of extending the results of Ref. 1 to the vectorial case, we consider elec-

tromagnetic sources in the form of an infinitely thin annulus of radius a, placed across the

plane z = 0. The pertinent BCP matrix can be written as

Ĵ(ρ1,ρ2, 0) = K δ(ρ1 − a) δ(ρ2 − a) Ĵa(ϕ1 − ϕ2), (2)

where ρj = (ρj, ϕj), (j = 1, 2), are polar coordinates across the source plane, δ(·) is the Dirac

function, and K is a positive constant having dimensions of an area. The shift-invariant

matrix Ĵa(ϕ1−ϕ2) accounts for the angular correlation along the annulus and will be loosely

referred to as the BCP matrix of the source.

Notice that the polarization matrix across the source, which corresponds to Ĵ(ρ,ρ, 0),

does not depend on the position along the annulus. This means that all the local properties

of the source, such as the polarization state, the polarization degree, and the irradiance,

which is proportional to Tr[Ĵa(0)], with Tr[·] denoting the trace, are uniform along the

annulus.

Since all the elements of Ĵa depend on ϕ1 − ϕ2 only, they can be expanded into Fourier

series. The BCP matrix then takes the form

Ĵa(ϕ1 − ϕ2) =
∞∑

n=−∞

γ̂n ein(ϕ1−ϕ2) , (3)

where γ̂n (n = 0,±1,±2, . . . ) are 2 × 2 matrices containing the Fourier coefficients of the

elements of Ĵa. The elements of γ̂n cannot take arbitrary values because of some very general

constraints about the form of any plausible BCP matrices. First of all, since Ĵ(ρ2,ρ1, 0) =

Ĵ†(ρ1,ρ2, 0), with the dagger denoting Hermitian conjugation, the matrices γ̂n must be
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Hermitian for any value of n. Moreover, since the diagonal elements of the BCP matrix,

namely, Jαα, (α = x, y), are themselves possible scalar mutual intensities (because they

represent the source obtained on filtering the original one by means of a linear polarizer

whose transmission axis is aligned along the α-axis), the result found for the scalar case [1]

applies and the following condition has to be satisfied by the diagonal elements of the γ̂n

matrices:

γn,αα ≥ 0, ∀n, (α = x, y). (4)

We deal now with the non-negative definiteness issue [7]. Accordingly, we have to consider

the quadratic form, say Q, defined by

Q =

∫∫
g†(ϕ1) Ĵa(ϕ1 − ϕ2) g(ϕ2) dϕ1dϕ2 , (5)

where proportionality factors have been omitted. Here, all the integrals are extended over

a 2π interval and g is an arbitrary (well behaving) vector function, written as a column

vector. For any choice of g, Q must be non-negative. If we express g through its Fourier

expansion, i.e.,

g(ϕ) =
∞∑

n=−∞

ηn exp(inϕ) , (6)

and insert from Eqs. (3) and (6) into Eq. (5), we obtain the following non-negativeness

condition:
∞∑

n=−∞

η†nγ̂nηn ≥ 0 , (7)

which must be valid for arbitrary choices of the vectors ηn. It should be noted that

Eq. (7) can be interpreted as the non-negativeness condition for the infinite diagonal block

matrix diag(. . . , γ̂−1, γ̂0, γ̂1, . . .) which will be satisfied iff each 2 × 2 diagonal block γ̂n

(n = 0,±1,±2, . . .) is non-negative definite [29]. In particular, due to their above remainded

Hermiticity property, this requires that their trace and determinant be non-negative. As far

as the former is concerned, its non-negativity follows from Eq. (4), while the same condition

on the determinant leads to

|γn,xy|2 ≤ γn,xx γn,yy, ∀n. (8)

Let us now pass to the problem of determining the vector modes [15] of the source. To

this aim, we recall that the matrices γ̂n can always be expressed through their spectral

4



decomposition [31], which in the present case reads

γ̂n =
2∑
i=1

σ(i)
n Φ(i)

n Φ(i)
n

†
. (9)

Here, σ
(i)
n are the two eigenvalues of γ̂n and Φ(i)

n are column vectors representing the corre-

sponding eigenvectors. For a positive semidefinite matrix, the eigenvalues are nonnegative

and the eigenvectors are (or can be chosen as, in case of degeneracy) orthonormal. The

latter property implies that, when the eigenvectors are thought of as the Jones vectors of

two electromagnetic fields, such fields have mutually orthogonal polarization states. On

inserting from Eq. (9) into Eq. (3), the following expression is obtained:

Ĵa(ϕ1 − ϕ2) =
+∞∑

n=−∞

2∑
i=1

λ(i)
n Ψ(i)

n (ϕ1) Ψ(i)†
n (ϕ2) , (10)

where

λ(i)
n = 2π σ(i)

n , (11)

and

Ψ(i)
n (ϕ) =

1√
2π

Φ(i)
n einϕ . (12)

Since the vector fields in Eq. (12) are mutually orthonormal, i.e.,∫
Ψ(i)†
n (ϕ) Ψ(j)

m (ϕ) dϕ = δij δnm , (13)

the expansion in Eq. (10) just corresponds to the modal expansion of the BCP of the annular

source, with eigenvalues and modes given by λ
(i)
n and Ψ(i)

n (ϕ), respectively.

It is to be noted that the nth term of the expansion in Eq. (10) is constituted by the

superposition of two mutually uncorrelated fields, having the same angular dependence.

Since the weights of these two fields are λ
(1)
n and λ

(2)
n , such term corresponds, in general, to

a partially polarized source with a (uniform) polarization matrix given by [see Eq. (9)]

P̂n(ρ, 0) = γ̂n , (14)

and whose degree of polarization can be expressed as [30]

pn =
|λ(1)
n − λ(2)

n |
λ

(1)
n + λ

(2)
n

=
|σ(1)
n − σ(2)

n |
σ

(1)
n + σ

(2)
n

, (15)

because the two mode in each term have orthogonal polarizations. Furthermore, it should be

stressed that each of such terms corresponds to a field that would be considered as perfectly

5



coherent from the spatial point of view if no anisotropic elements were used to measure

its coherence properties. This is quantified by the (equivalent) degree of coherence [8, 14]

which, when applied to the angular part of the BCP matrix, reads (with ϕ12 = ϕ1 − ϕ2)

µeq(ϕ12) =
Tr[Ĵa(ϕ12)]

Tr[Ĵa(0)]
. (16)

Another parameter used to specify the coherence properties of a vectorial field is the elec-

tromagnetic degree of coherence [13], which in the present case is

µem(ϕ12) =

√
Tr[Ĵa(ϕ12)Ĵ

†
a (ϕ12)]

Tr[Ĵa(0)]
. (17)

For each of the above partially polarized component fields of the decomposition in Eq. (9),

i.e., for Ĵa(ϕ12) = γ̂n exp[in(ϕ12)], Eq. (16) gives µeq = exp(inϕ12), so that it is of unitary

modulus, while the electromagnetic degree of coherence turns out to be µem = [(1+p2
n)/2]1/2,

i.e., it takes a constant value.

On the other hand, the limiting case of spatially incoherent annular source is reached

when all γ̂n matrices in Eq. (3) equal the polarization matrix of the source, apart from a

common proportionality factor [25].

Finally, we give the explicit expressions of eigenvalues and eigenvectors of the matrices

γ̂n. They are obtained by solving the corresponding eigenvalue equations, i.e.,

γ̂n Φn = σn Φn , (18)

whose associated secular equations read

σ2
n − Tnσn +Dn = 0 , (19)

where Tn and Dn stand for the trace and the determinant of γ̂n, respectively. For what said

before, Dn is a non-negative quantity. Further, it is easily seen that 4Dn/T
2
n does not exceed

one. Then, the two solutions turn out to be

σ(1,2)
n =

Tn
2

(
1±

√
1− 4Dn

T 2
n

)
, (20)

and are both non-negative, as was expected. If |γn,xy| 6= 0, the corresponding eigenvectors
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can be specified by the vectors

Φ(i)
n = N (i)

n


1

γn,xx − σ(i)
n

γn,xy

 , (21)

where the normalization factor, N
(i)
n , is given by

N (i)
n =

1 +

∣∣∣∣∣γn,xx − σ(i)
n

γn,xy

∣∣∣∣∣
2
−1/2

. (22)

If |γn,xy| = 0, the eigenvectors turn out to be

Φ(1)
n =

 1

0

 , Φ(2)
n =

 0

1

 , (23)

with eigenvalues σ
(1)
n = γn,xx and σ

(2)
n = γn,yy, respectively.

3. Propagation

In this section we will study how the vectorial correlation properties of the field radiated

by our annular sources change upon free propagation. As in the scalar case, we shall limit

ourselves to paraxial approximation. The reader should be cautioned that the results can

be applied beyond a certain distance from the source [32, 33].

Let us recall that the elements of the BCP matrix change upon propagation according to

the same law holding for the mutual intensity, so that

Ĵ(r1, r2, z) =
1

λ2z2

∫∫
Ĵ(ρ1,ρ2, 0)

× exp

{
ik

2z

[
(r1 − ρ1)

2 − (r2 − ρ2)
2
]}

d2ρ1d
2ρ2 .

(24)

where rj = (rj, ϑj), (j = 1, 2), are polar coordinates across the transverse plane at a distance

z from the soure. On inserting from Eq. (2) into Eq. (24) we obtain

Ĵ(r1, r2, z) =
Ka2

λ2z2
exp

[
ik

2z
(r2

1 − r2
2)

]

×
∫∫

Ĵa(ϕ1 − ϕ2) exp

{
−i

ka

z
[r1 cos(ϑ1 − ϕ1)

−r2 cos(ϑ2 − ϕ2)]} dϕ1 dϕ2 .

(25)
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Using the Mercer expansion in Eq. (10) together with the definition in Eq. (12), and pro-

ceeding as in the scalar case [1], the following result is obtained:

Ĵ(r1, r2, z) =
2∑
i=1

+∞∑
n=−∞

λ(i)
n Ψ(i)

n (ρ1, z) Ψ(i)†
n (ρ2, z) , (26)

with

Ψ(i)
n (ρ, z) = αz

√
K

2π
Jn (αzr)

× exp

(
i
kr2

2z

)
Φ(i)
n einϑ , (i = 1, 2),

(27)

where αz = ka/z and Jn(·) is the Bessel function of the first kind and order n [34].

The series on the right-hand side of Eq. (26) represents, within the paraxial approxima-

tion, the modal expansion of the field propagated away from the annular electromagnetic

source, with the modes given in Eq. (27).

The local polarization matrix is obtained by letting r1 = r2 = r in Eq. (26). Then, on

recalling Eqs. (9) and (11), the following expression is derived for the propagated polarization

matrix:

P̂ (r, z) = Kα2
z

+∞∑
n=−∞

γ̂n J
2
n (αzr) , (28)

which is a function of the radial coordinate r. As a consequence, both the state and the

degree of polarization of the field may change across the observation plane. This may appear

a little surprising, because the irradiance and the polarization properties of the source are

supposed to be uniform along the annulus. Indeed, this is a consequence of the different

propagation properties of the modes, whose polarization is different from one another.

As far as the dependence on the longitudinal coordinate is concerned, Eq. (28) states

that the transverse irradiance and polarization patterns simply increase their size during

propagation without changing their shape. It is then understood how, by using suitable

collimating lenses, such annular sources can give rise to partially coherent electromagnetic

diffraction-free beams [28].

4. Examples

As a first simple example we consider the following BCP matrix:

Ĵa(ϕ12) =
I0
2

 1 0

0 eiϕ12

 , (29)

8



with I0 being a positive constant. On evaluating such matrix for ϕ12 = 0, it is found that

the field associated to the source is completely unpolarized. The only nonvanishing matrices

of the expansion in Eq. (3) are

γ̂0 =
I0
2

 1 0

0 0

 ; γ̂1 =
I0
2

 0 0

0 1

 , (30)

so that the source can be thought of as the uncorrelated superposition of a uniphase and

uniform field polarized along the x-axis, and a uniform field polarized along the y-axis whose

phase varies linearly from zero to 2π along the annulus. The two fields carry the same power,

I0/2.

The polarization matrix of the field propagated at a distance z is readily obtained from

Eqs. (28) and (30), and turns ot to be

P̂ (r, z) =
KI0α

2
z

2


J2

0 (αzr) 0

0 J2
1 (αzr)

 , (31)

with degree of polarization given by

p(r, z) =
|J2

0 (αzr)− J2
1 (αzr)|

J2
0 (αzr) + J2

1 (αzr)
. (32)

Plots of the propagated irradiance and degree of polarization are shown in Fig. 1 as functions

of αzr.

For another simple example, let us consider a BCP of the form

Ĵa(ϕ12) =

I0


cosϕ12 − iβ sinϕ12 − sinϕ12 − iβ cosϕ12

sinϕ12 + iβ cosϕ12 cosϕ12 − iβ sinϕ12

 ,
(33)

where β is a real quantity such that |β| ≤ 1. The degrees of coherence in Eqs. (16) and

(17) pertaining to such a source are found to be

µeq(ϕ12) = cosϕ12 − iβ sinϕ12 (34)
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and

µem(ϕ12) =

√
1 + β2

2
, (35)

respectively, while the degree of polarization is obtained from the local polarization matrix,

i.e., by letting ϕ12 = 0 in Eq. (33), and equals |β| at any point of the annulus. This means

that, on changing β, both the coherence and the polarization properties of the source can

be varied. In particular, when |β| ranges from 0 to 1, the field passes from completely

unpolarized to perfectly polarized. Correspondingly, the modulus of its equivalent degree

of coherence goes from | cosϕ12| to 1, while the electromagnetic degree of coherence goes

from 0.5 to 1.

The modes of the source described in Eq. (33) can be easily found. Only the values

n = 1 and n = −1 are involved in the expansion in Eq. (3). For each of them, there is only

one eigenvalue different from zero, namely, σ±1 = I0(1∓ β), which the following two vector

modes correspond to:

Ψ±1(ϕ) =
I0√
4π

 1

∓ i

 e±iϕ. (36)

In conclusion, the overall field is the superposition of two uncorrelated modes having counter-

rotating circular polarization states and generally different powers. It is easy to verify that

the propagated field keeps the inital polarization state at any distance z, at any point of the

transverse plane.

A third example is provided by the BCP matrix

Ĵa(ϕ12) = I0


tri
(ϕ12

π

)
tri
(ϕ12

π
− 1
)

tri
(ϕ12

π
+ 1
)

tri
(ϕ12

π

)
 , (37)

with

tri(t) =


1− |t| (|t| ≤ 1) ;

0 (|t| > 1) .

(38)

By Fourier transforming the above elements, the γ̂n matrix turns out to be

γ̂n =
I0
2

sinc2
(n

2

)  1 (−1)n

(−1)n 1

 , (39)
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where sinc(t) = sin(πt)/(πt). For each value of n, such matrix has only one eigenvalue,

namely,

σn = I0 sinc2
(n

2

)
, (40)

and the corresponding vector mode turns out to be

Ψn =
1√
4π

 1

(−1)n

 einϕ . (41)

In this case, the polarization matrix of the field propagated at a distance z turns ot to

be, after some calculations,

P̂ (r, z) =
K I0 α

2
z

2

×


J2

0 (αzr) + F (αzr) J2
0 (αzr)− F (αzr)

J2
0 (αzr)− F (αzr) J2

0 (αzr) + F (αzr)

 ,

(42)

with the function Fz(r) defined as

F (t) =
8

π2

∞∑
n=0

J2
2n+1(t)

(2n+ 1)2
, (43)

and the degree of polarization is given by

p(r, z) =
|J2

0 (αzr)− F (αzr)|
J2

0 (αzr) + F (αzr)
. (44)

As we shall see in Sec. 5, the latter two examples refer to cases that can be realized in

the laboratory by means of simple experimental tools.

5. Synthesis

In this section, we discuss possible experimental procedures for synthesizing shift-invariant

BCP matrices along the annulus.

One of the techniques proposed for the synthesis of scalar annular sources consists in a

rotating transparency, placed in front of an annular aperture, illuminated by a plane wave

impinging orthogonally [1]. We wonder whether, for our present purposes, the rotating

transparency of the scalar case can be replaced by a rotating anisotropic element. It is

to be noted that in the scalar case the value of the transmission function at a fixed point
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of the transparency does not depend on the rotation angle. It is this feature that gives

rise to the shift-invariance of the mutual intensity. When the transparency is replaced by

an anisotropic element the role of the transmission function is played by the 2×2 Jones

matrix characterizing the element [2]. Generally speaking, such matrix depends on the

rotation angle. As a consequence, the resulting elements of the BCP matrix will not be

shift-invariant. A notable exception is given by a rotator, whose Jones matrix does not

change if the angular position of the rotator is varied.

Suppose now that an anisotropic element is constituted by a variable rotator. More

precisely, we assume that, when the rotator is held fixed, the rotation angle it introduces

is a function of the angular position ϕ on the element. Denoting by η the rotation angle

introduced by the rotator, we then have

η = η(ϕ). (45)

As an example, suppose η to be given by

η(ϕ) = ϕ. (46)

Suppose further that such element is illuminated by a plane wave with arbitrary, but uniform,

polarization state. Let us write the electric field of such a wave as

Ein =

 Ax

Aye
iα

 , (47)

with Ax, Ax, and α positive constants. Then, at a typical point of the annulus, the electric

field will be

Eout(ϕ) =


cosϕ Ax − sinϕ Aye

iα

sinϕ Ax + cosϕ Aye
iα

 . (48)

Now, let the anisotropic element rotate at angular speed ω, so that the angle ϕ in Eq. (48)

is replaced by ϕ−ωt. Then, we can evaluate the elements of the BCP matrix taking a time
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average. It is easily found that

Ĵa(ϕ12) =
A2

2

×


cosϕ12 − iε sinα sinϕ12 − sinϕ12 − iε sinα cosϕ12

sinϕ12 + iε sinα cosϕ12 cosϕ12 − iε sinα sinϕ12

 ,

(49)

where A2 = (A2
x + A2

y) and

ε =
2AxAy
A2

. (50)

The obtained BCP matrix is of the form specified by Eq. (33) in Sec. 4, with I0 = A2/2 and

β = ε sinα, and all considerations done in that case hold. In particular, both the polarization

degree and the coherence degree of the output radiation can be varied on changing the

polarization state of the input one.

From the experimental point of view, realizing a rotator whose rotation angle varies

continuously from 0 to 2π may be a demanding task. A discretized version of such an element,

however, can be realized following the approach used for the generation of azimuthally or

radially polarized beams (see, for instance, [35] and references therein). In one of such

techniques [36], use is made of an optical element divided into four quadrants. In each of

such quadrants the element basically acts as a half-wave plate, whose fast axis is rotated

by 45◦ with respect to the adjacent one. Now, if such a tool is superimposed to a spatially

uniform half-wave plate, a four-quadrant rotator is obtained, which in each sector rotates

the incident polarization by a different angle [37].

To have an idea of the elecromagnetic source one would obtain by using a discretized

rotator into the above experimental scheme, we consider a transparent disk made of just

two halves. One of them (say, the upper part) does not impart any rotation to the incoming

field, whereas the other produces a rotation of π/2. A plane wave of amplitude A, linearly

polarized along the x axis, illuminates the disk put in front of the annular aperture. At a

typical point of the annulus, the Cartesian components of the electric field will be

Ex(ϕ) = A rect

(
ϕ− π/2

π

)
,

Ex(ϕ) = A rect

(
ϕ+ π/2

π

)
,

(51)
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where

rect(t) =


1 (|t| ≤ 1/2) ;

0 (|t| > 1/2) .

(52)

On proceeding as for the previous case, the BCP matrix turns out to be the same as that

of Eq. (37) in Sec. 4, with I0 = π|A|2/ω.

The above device can be made more elaborated if the disk is divided into more than

two sectors, as for the four-quadrant tool quoted above. Alternatively, one could maintain

only two sectors but of different angular extent. As could be easily verified, this would

differentiate Jxx from Jyy.

6. Summary

In this paper the properties of a class of electromagnetic partially correlated thin annular

sources have been analyzed in the framework of the BCP formalism. Our analysis generalizes

that presented, for the scalar case, in Ref. [1]. In the limiting cases of perfect coherence and

complete incoherence, these sources are shown to produce diffraction-free and J0-correlated

electromagnetic beams, respectively.

When the vectorial correlation properties of the radiation across the sources are assumed

to be dependent only on the angular distance between two points on the annulus, the

modal expansion of the sources can be found by means of elementary Fourier analysis. The

knowledge of the modes, in particular, allowed us to study, in a simple way, changes in the

correlation properties of the electromagnetic fields propagating away from such sources.

Examples have been presented of electromagnetic annular sources with very different

coherence and polarization properties, and possible experimental schemes, based on ordinary

anysotropic optical elements, have eventually been proposed for the synthesis of such sources.
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Figure captions

Figure 1: Normalized irradiance distribution (dashed) and polarization degree (full) of the

field emitted by the source described in Eq. (29).

Figure 2: Normalized irradiance distribution (dashed) and polarization degree (full) of the

field emitted by the source described in Eq. (37).
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Fig. 1. Normalized irradiance distribution (dashed) and polarization degree (full) of the field

emitted by the source described in Eq. (29).
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Fig. 2. Normalized irradiance distribution (dashed) and polarization degree (full) of the field

emitted by the source described in Eq. (37).
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