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I. INTRODUCTION

There is an increasing interest in beams with a non-uniform polarization distribution across the plane

orthogonal to the mean propagation direction, and much research is devoted to the study of changes that

occur when a partially and/or non-uniformly polarized beam propagates in free space or through optical

systems (see for example Refs. [1–15]). In particular, it is well known that a non-uniformly polarized

beam generally changes its polarization pattern upon propagation, even in the case of perfectly polarized

and deterministic field distributions in paraxial conditions. Of course, this happens because, in general,

the two orthogonal transverse components of the electric field change in different ways upon propagation,

so that the polarization pattern of the propagated field does not reproduce the initial one. Significant

exceptions are radially or azimuthally polarized beams, or their generalization, the so-called spirally

polarized beams (SPB) [5, 16–18], whose electric field lines across a transverse plane are logarithmic

spirals, and that include, as limiting cases, both azimuthally and radially polarized beams. Beams of

these types have been also shown to be useful in applications, such as microscopy, material processing,

manipulation of atoms or molecules (see Ref. [14] and references therein).

On the other hand, when non-deterministic fields are considered, a richer behaviour is observed in

their polarization and coherence features during propagation. One of the main tasks in this subject is

to derive the conditions that a general field must satisfy in order to maintain invariant its polarization

characteristics when it freely propagates [6, 10–13]. In particular, Tervo [6] derived the conditions under

which an electromagnetic partially coherent source gives rise to an azimuthally polarized field at any

transverse plane orthogonal to the mean propagation direction. Such polarization-invariance conditions

can be extended [12] to the whole class of partially coherent spirally polarized beams.

Most of the above studies are theoretical and, to our knowledge, there are no papers yet in the literature

reporting experimental synthesis of partially coherent beams with propagation-invariant polarization

patterns.

Aim of the present work is to carry out a detailed characterization of an experimentally synthesized

partially coherent beam of this type. In particular, the beam, presenting a spiral-like polarization trans-
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verse profile, is characterized both from the local state of polarization at each point across the beam

profile and, from a global point of view, by means of some overall parameters [19, 20].

The paper is arranged as follows. In section 2, we recall the polarization-invariance conditions that

the source must satisfy in order to produce a partially coherent beam with spiral-like polarization dis-

tribution across any transverse plane upon free propagation. A general procedure for synthesizing such

beams is given in section 3. In section 4, experimental results are presented, concerning the transverse

polarization pattern and irradiances of the propagated beam, which are compared with the theoretical

ones. Furthermore, the values of the above global parameters are compared with the expected values.

The main conclusions are reported in section 5.

II. PRELIMINARIES

Let us begin with a paraxial quasi-monochromatic partially coherent electromagnetic beam, described

at the plane z = 0 (which will be referred to as the source plane) by means of its cross-spectral density

(CSD) matrix [21], that is

Ŵ (ρ1, ρ2, 0) =




〈Ex(ρ1, 0)E∗
x(ρ2, 0)〉 〈Ex(ρ1, 0)E∗

y(ρ2, 0)〉

〈Ey(ρ1, 0)E∗
x(ρ2, 0)〉 〈Ey(ρ1, 0)E∗

y(ρ2, 0)〉


 (1)

where ρ = (ρ, ϕ) is the position vector across the transverse plane, Ex and Ey are the two transverse

components of the electric field, the brackets denote ensemble averages, and the dependence on the

temporal frequency has been omitted for brevity.

In Ref. [6], Tervo derived a necessary and sufficient condition for a beam to be azimuthally polarized

at any propagation distance. He showed that, in such a case, the CSD matrix at z = 0 must be of the

form

Ŵ (ρ1, ρ2, 0) = W s(ρ1, ρ2, 0) P̂ (ϕ1, ϕ2) , (2)

with W s(ρ1, ρ2, 0) being any scalar CSD function, depending only on the radial coordinates ρ1 and ρ2,
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and P̂ (ϕ1, ϕ2) is defined as

P̂ (ϕ1, ϕ2) = Φ(ϕ1)Φ†(ϕ2) , (3)

where Φ(ϕ) is the Jones vector corresponding to an azimuthally polarized field, i.e.,

Φ(ϕ) =




− sin ϕ

cosϕ


 , (4)

and the dagger denotes the adjoint. Equation (2) states that any partially coherent field with propagation-

invariant azimuthal polarization pattern must present perfect correlation between points belonging to

circles ρ = constant.

Condition in Eq. (2) can be generalized to the case of beams that remain spirally polarized upon free

propagation [12]. In such a case, the matrix P̂ that appears in Eq. (2) turns out to be

P̂ (ϕ1 + α, ϕ2 + α) = Φ(ϕ1 + α)Φ†(ϕ2 + α), (5)

where the angle α is related to the growth parameter of the polarization spirals. The polarization pattern

described by the Jones vector appearing in Eq.(5) is sketched in Fig. 1. It is seen, in particular, that

for α = nπ, with n = 0, 1, 2..., the beam is azimuthally polarized while for α = (2n + 1)π/2 the beam is

radially polarized. The polarization invariance condition then reads

Ŵ (ρ1, ρ2, 0) = W s(ρ1, ρ2, 0) P̂ (ϕ1 + α, ϕ2 + α) . (6)

Let now this beam propagate a certain distance z, in paraxial conditions. On using the Fresnel integral,

the propagated CSD matrix turns out to be

Ŵ (ρ1, ρ2, z) = W s(ρ1, ρ2, z) P̂ (ϕ1 + α, ϕ2 + α) , (7)

with

W s(r1, r2, z) =
(

k

z

)2

exp
[
i

k

2z
(r2

1 − r2
2)

]

×
∫∫

W s(ρ1, ρ2, 0) exp
[
i

k

2z
(ρ2

1 − ρ2
2)

]
J1

(
k

z
r1 ρ1

)
J1

(
k

z
r2 ρ2

)
ρ1ρ2 dρ1dρ2 ,

(8)
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where k is the wave number, J1 is the Bessel function of the first kind and order 1 [22], and the inegrals

are extended over the whole source plane. As can be seen from Eq. (7), the polarization pattern remains

invariant upon free propagation, regardless the value of α.

III. SYNTHESIS

According to the condition in Eq. (6), the scalar part of the CSD matrix of a beam whose transverse

polarization pattern remains of the spiral type upon propagation, must depend on the radial coordinates

ρ1 and ρ2 only. This means that all point belonging to a circle ρ = constant has to be perfectly correlated

with one another. Such a requirement prevents the use of the van Cittert–Zernike theorem for the

synthesis of such beams, as it is customary for all sources of the Schell-model type [3, 24], and a different

approach must be used.

The synthesis can be realized, for instance, by superimposing a number, say N , of mutually uncorrelated

perfectly coherent fields, all of them endowed with rotational symmetry and spiral polarization pattern.

We can write such fields in the form

Un(ρ) =
√

λn fn(ρ)Φ(ϕ + α) , (9)

where n = 1, ..., N , the functions fn(ρ) are supposed to be normalized, and the quantity λn gives account

of the power content of the nth field. Furthermore, since the polarization vector is not defined at ρ = 0,

the condition fn(0) = 0 must be fulfilled.

Since the fields Un are mutually uncorrelated, the CSD matrix obtained from their superposition is of

the form in Eq. (6), with

W s(ρ1, ρ2, 0) =
∑

λn fn(ρ1)f∗
n(ρ2) . (10)

This expression reduces to a Mercer-like expansion when the fields fn(ρ) coincide with the modes and

λn with the eigenvalues of W s [25, 26]. In this sense, any scalar CSD depending only on the radial

coordinates ρ1 and ρ2 can be synthesized following such an approach, and any spirally polarized partially

coherent beam can be generated. It should be noticed that the fields used in the present experiment are
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both mutually uncorrelated and orthogonal, so that they are the modes of the syntesized source, but this

is not required in the synthesis procedure. The superposed fields might be either mutually (partially or

totally) correlated and nonorthogonal

In our experiment, two spirally polarized fields with rotationally symmetric amplitudes are superim-

posed by using the experimental setup represented in Fig. 2. Two distinct He-Ne laser beams, linearly

polarized along the vertical axis, are expanded, spatially filtered, and collimated by means of a microscope

objective and a converging lens (Oi and Li, respectively, with i = 1, 2). They pass through two different

annular apertures Ti (Fig. 3), such that the output field distributions have analytical forms given by

fi(ρ) = Ai[circ(ρ/Bi) − circ(ρ/Ci)] ; (i = 1, 2) , (11)

with circ(ρ/a) representing a clear circular aperture of radius a. In particular, the values A1 = A2,

B1 =2.35 mm, C1 = 1.50 mm and B2 =3.20 mm, C2 =2.46 mm have been used.

The two beams are then superimposed by using a beam splitter (BS) and the images of T1 and T2

are formed onto the plane Π0 by means of an optical system, consisting in the two converging lenses

LA and LB , with magnification M = −0.30. The plane Π0 represents the source plane (z = 0) of the

synthesized beam. Note that the fields at two points across the source plane are perfectly correlated if the

points belong to the same annulus, but they are completely uncorrelated if the points belong to different

annulus. In particular, points along a circle are always perfectly correlated with one another.

In order for the source to be endowed with a spiral-like polarization pattern, we use first an Arcoptix

liquid-cristal polarization converter (PC), which locally rotates the incident linear polarization [27]. The

Jones matrix describing the polarization converter can be written as

Â =




cosϕ − sinϕ

sinϕ cosϕ


 , (12)

so that the field at the output of the PC turns out to be azimuthally polarized. After the PC, a

polarization rotator (R), consisting in two half-wave plates, whose fast axes form the angle γ with one
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another (see Fig. 4), is placed [28]. The Jones matrix of this element is [28]

R̂ =




cos 2γ − sin 2γ

sin 2γ cos 2γ


 , (13)

and therefore it represents a local rotation by 2γ of the incident polarization. In conclusion, at the

plane Π0 a partially coherent source with spiral polarization pattern, with α = 2γ, is obtained. In our

experiment, the angle between the two fast axes of the half-wave plates in the rotator has been set in

such a way that α = −35◦.

The back focal plane of the above optical system (i.e., the lenses LA and LB) is Π∞, at a distance

R0 = 240 mm from Π0 (see Fig. 2). This means that both the annular fields imaged onto Π0 present,

at z = 0, a negative curvature factor of the form exp[−ikρ2/2R0]. Therefore, all propagation distances

that would have been considered if the curvature was not present (between zero and infinity) are mapped

onto a finite interval (between Π0 and Π∞). On the other hand, the presence of a curvature factor in the

propagated field does not affect its polarization characteristics.

These concepts are quantified by the (generalized) Fresnel number [29], which in the present case can

be defined as

NF =
(MB2)2

λ

(
1
z
− 1

R0

)
, (14)

which controls the shape of the transverse intensity profile. In particular, when z = R0 we have NF = 0,

meaning that Π∞ is the plane where the far-field conditions for the evaluation of the field radiated by the

source are exactly met. Moving the observation plane toward the source leads to increasing the values of

NF , up to infinity (when z = 0).

The propagated intensity profiles are observed by means of the microscope objective O3, which images

them onto the CCD sensor of a camera (Pulnix TM-765). O3 can be moved along the optical axis, so

that profiles at different propagation distances can be acquired. Furthermore, a polarization analyzer

(PA), consisting in a quarter-wave plate (λ/4) and a linear polarizer (P ), is used for the measurement

of the local Stokes parameters of the field across its transverse sections.

Results about the characterization of the generated beam will be presented in the following section.
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IV. CHARACTERIZATION

To experimentally study the characteristics of the synthesized beam upon propagation, the polarization

distribution and some significant global parameters of the field across different transverse planes have been

analyzed. All of them are calculated from the local Stokes parameters, si (i = 0, 1, 2, 3) which, in turn,

can be determined with a standard procedure on measuring the irradiance I(r, θ) for different choices of

the parameters of the polarization analyzer (i.e., the orientation of the polarizer and the presence of the

wave plate). With evident meaning of the symbols, we have [30]




s0(r, θ) = I0◦(r, θ) + I90◦(r, θ),

s1(r, θ) = I0◦(r, θ) − I90◦(r, θ),

s2(r, θ) = I45◦(r, θ) − I135◦(r, θ),

s3(r, θ) = Iλ/4,45◦(r, θ) − Iλ/4,135◦(r, θ).

(15)

To give a first description of the polarization distribution of the synthesized beam across its transverse

sections, we used Eqs. (15) to evaluate the irradiance and the local polarization state at four different

transverse planes: z = 0 (i.e., the source plane) (a), two intermediate planes, z1 = 86 mm (NF ' 11)(b)

and z2 = 106 mm (NF ' 7.7)(c), respectively, and the far-field plane z3 = R0 = 240 mm (NF = 0)(d).

Results shown in Fig. 5 confirm that the spiral-like distribution of polarization remains almost invariant

upon paraxial propagation. The small differences between experimental and expected patterns may be

due to imperfections of the polarization converter (PC) or to slight non-uniformities in the irradiance

profile of the input beam. To compare the above plots with the theoretical ones, the latter have been

reported in Fig. 6. As can be seen, the agreement between theory and experiment is quite good.

From the polarization patterns shown in Fig. 5, it can be noticed that the synthesized beam presents

a spiral-like, but slightly irregular distribution of polarization. For example, there are points of the

beam profile where the polarization state is elliptic or where the azimuth angle is different from the

expected one. For such reasons, it would be interesting to evaluate the quality or the uniformity of

the polarization distribution of the synthesized beam in a different way. It could be useful, instead of

working with a matrix of values (local characterization), to give only a parameter which characterizes
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the beam. One usual standard procedure is to measure the averaged Stokes parameters and represent

the state of polarization as a point in the Poincare sphere. For this type of non-uniformly polarized

beam all the averaged Stokes parameters, except s0, would be zero and consequently it does not give

a significant result. So that, other overall parameters are needed. From a global standpoint, indeed,

significant parameters to characterize non-uniformly polarized beams are those giving the radial and

azimuthal polarization contents across the transverse section of the beam [20, 31]. Such parameters are

denoted by ρ̃r and ρ̃θ, respectively, and are defined by means of the following expressions [20]:

ρ̃r =
1

PT

∞∫

0

2π∫

0

ρr(r, θ) I(r, θ) r dr dθ, (16)

ρ̃θ =
1

PT

∞∫

0

2π∫

0

ρθ(r, θ) I(r, θ) r dr dθ, (17)

where

PT =

∞∫

0

2π∫

0

I(r, θ) r dr dθ. (18)

while ρr and ρθ give the irradiance percentage of the radial and azimuthal component, respectively, of

the field at each point across the beam profile.

It is useful to write these parameters in terms of the local Stokes parameters, si(i = 0, 1, 2, 3), as [20]

ρ̃r =
1
2

+
1

2 PT

∞∫

0

2π∫

0

[cos(2θ) s1(r, θ) + sin(2θ) s2(r, θ)] r dr dθ, (19)

ρ̃θ =
1
2
− 1

2 PT

∞∫

0

2π∫

0

[cos(2θ) s1(r, θ) + sin(2θ) s2(r, θ)] r dr dθ. (20)

As can be easily seen from the above expressions, for fields written as in Eq. (7) the parameters defined

in Eqs. (16)-(17) are independent of the field amplitude and turn out to be

ρ̃r =
1
2
− 1

2
cos(2α) , (21)

ρ̃θ =
1
2

+
1
2

cos(2α) . (22)

Another global parameter can be useful for characterizing this kind of beams. Such parameter, namely

ρ̃c, gives the linear or circular polarization content across the beam profile, weighted with the values of
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the irradiance. In terms of the s3 Stokes parameter, ρ̃c is defined as [19]

ρ̃c =
1

PT

∞∫

0

2π∫

0

ρc(r, θ) s0(r, θ)r dr dθ , (23)

with

ρc(r, θ) =
s3(r, θ)
s0(r, θ)

. (24)

It turns out that ρ̃c = −1 for pure left-handed circularly polarized light while ρ̃c = +1 for pure right-

handed circularly polarized light. The value ρ̃c = 0 corresponds to a field with pure linear, generally

non-uniform, polarization, as is the case for spirally polarized fields.

For the generated beam, all these parameters have been calculated at the same four transverse planes

that we considered above: the source plane (z = 0), two intermediate planes (z1 = 86 mm and z2 =

106 mm) and the plane that corresponds to the far field (z = 240 mm). Experimental values of these

global parameters are shown and compared with the theoretical values in table I. As can be seen in

the table, the values of ρ̃r and ρ̃θ remain almost invariant along the four considered planes, meaning

that the radial and the azimuthal polarization contents of the beam do not change appreciably upon free

propagation. Furthermore, the value of ρ̃c shows that the content of circular polarization across the four

planes is always less than (or equal to) 3%.

Table I: Experimental and theoretical values of parameters ρ̃r, ρ̃θ and ρ̃c at different planes.

Plane ρ̃r ρ̃θ ρ̃c

z = 0 0.33 0.67 −0.03

z = z1 0.33 0.67 −0.03

z = z2 0.36 0.64 0.02

z = R0 0.36 0.64 −0.02

Theoretical values 0.33 0.67 0

The overall parameters studied in this section were already used for carrying out the global character-

ization of completely coherent spirally polarized fields [31]. In this section it has been shown that these

parameters can be also useful for characterizing non-uniformly polarized partially coherent beams.
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V. CONCLUSIONS

An experimental method for generating partially coherent non-uniformly polarized fields with

propagation-invariant transverse polarization pattern has been presented. The method has been ap-

plied to the synthesis of a partially coherent beam with a spiral-like distribution of polarization. The

synthesized beam has been characterized from two different points of view: by plotting the experimental

polarization and irradiance patterns, evaluated from the measured local Stokes parameters at each point

of the transverse section of the beam, and by means of some global parameters. It has been shown that

the polarization patterns and the values of these global parameters do not change appreciably upon free

propagation. Comparisons with the expected theoretical values in both cases have been given.
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Figure captions

Figure 1: Polarization pattern of a spirally polarized beam.

Figure 2: Experimental set-up for the synthesis of partially coherent fields with propagation-invariant

spiral polarization pattern. O: microscope objectives; L: lenses; T : annular transmittances; BS: beam

splitter; PC: polarization converter; R: polarization rotator; PA: polarization analizer; λ/4: quarter

wave phase plate; P : linear polarizer; R0 = 24 cm.

Figure 3: Scheme of the transmittances used in the experiment.

Figure 4: The polarization rotator, consisting in two half-wave phase plates, λ/2, whose fast axes form

the angle γ with one another.

Figure 5: Experimental polarization patterns and transverse irradiances at the source plane z=0 (a),

intermediate planes z1 = 86 mm (b) and z2 = 106 mm (c), and the far field (d).

Figure 6: Theoretical polarization patterns and transverse irradiances at the same planes than in Fig. 5.

The theoretical pattern has been computed for α = −35◦.
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Figure 1: Polarization pattern of a spirally polarized beam.

WS6730: “Synthesis and characterization of partially coherent beams with propagation-invariant trans-

verse polarization patter” by V. Ramı́rez-Sánchez et. al.
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Figure 2: Experimental set-up for the synthesis of partially coherent fields with propagation-invariant spiral
polarization pattern. O: microscope objectives; L: lenses; T : annular transmittances; BS: beam splitter; PC:
polarization converter; R: polarization rotator; PA: polarization analizer; λ/4: a quarter wave phase plate; P :
linear polarizer; R0 = 24 cm.

WS6730: “Synthesis and characterization of partially coherent beams with propagation-invariant trans-

verse polarization patter” by V. Ramı́rez-Sánchez et. al.
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T

2

T

1

Figure 3: Scheme of the transmittances used in the experiment.

WS6730: “Synthesis and characterization of partially coherent beams with propagation-invariant trans-

verse polarization patter” by V. Ramı́rez-Sánchez et. al.
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γ

λ/2

λ/2

Figure 4: The polarization rotator, consisting in two half-wave phase plates, λ/2, whose fast axes form the angle
γ with one another.

WS6730: “Synthesis and characterization of partially coherent beams with propagation-invariant trans-

verse polarization patter” by V. Ramı́rez-Sánchez et. al.
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(a) (b)

(c) (d)

Figure 5: Experimental polarization patterns and transverse irradiances at the source plane z=0 (a), intermediate
planes z1 = 86 mm (b) and z2 = 106 mm (c), and the far field (d).

WS6730: “Synthesis and characterization of partially coherent beams with propagation-invariant trans-

verse polarization patter” by V. Ramı́rez-Sánchez et. al.
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(a) (b)

(c) (d)

Figure 6: Theoretical polarization patterns and transverse irradiances at the same planes than in Fig. 5. The
theoretical pattern has been computed for α = −35◦.

WS6730: “Synthesis and characterization of partially coherent beams with propagation-invariant trans-

verse polarization patter” by V. Ramı́rez-Sánchez et. al.


