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Abstract
Recently introduced global parameters for describing the polarization of a beam are used to
characterize spirally polarized fields, which include as particular cases azimuthally and radially
polarized fields. Theoretical predictions about such global parameters are experimentally
confirmed by generating beams with spirally polarized transverse patterns, by means of two
different procedures.
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1. Introduction

Synthesis of optical beams with non-uniform distributions of
polarization across the beam profile is a topic of growing
interest in optics, both from theoretical and from applicative
viewpoints. Several methods have been proposed in the
literature to synthesize non-uniformly polarized beams [1–14].
Most of them are aimed at generating radially or azimuthally
polarized beams. Just to quote some of them, we recall
techniques using interferometric arrangements [5], sectored
spatially varying retarders [6–8], space-variant wave plates
based on stress birefringence [9], and polarization converters
based on liquid-crystal devices [10–14].

As a particular case of non-uniformly totally polarized
fields, spirally polarized beams (SPBs) [15–22] have attracted
much interest in recent years. They present axially symmetric
polarization patterns, with linear polarization at any point of
the transverse profile and with the electric field lines being
logarithmic spirals. SPBs include, as limiting cases, radially
and azimuthally polarized beams [23, 24], and can always
be thought of as the result of the linear superposition of
two beams of such a kind [21]. Due to their high focusing
capability [16–18], SPBs are used in several applications, such
as optical tweezers, particle trapping, laser cutting, material
processing, microscopy, etc [25–29].

On the other hand, for the characterization of non-
uniformly polarized beams some overall parameters have been
introduced in the literature. Examples are the average degree of
polarization [30], the generalized degree of polarization [31],

and others, which have been recently proposed for measuring
the circular [32] and the radial and azimuthal polarization
contents across the beam profile [33]. In the present work,
the latter parameters are applied to the case of synthesized
beams with spiral polarization distribution across a transverse
plane. With this aim, two experimental techniques, making use
of an azimuthal linear polarizer and a polarization converter,
respectively, together with a polarization rotator, are presented.

2. Preliminaries

Let us begin by considering a non-uniformly polarized field
represented by the following Jones vector [34] across a plane
z = constant: [15]

E(r) = f (r, θ)

( − sin(θ + α)

cos(θ + α)

)
, (1)

where r = (r, θ) is the position vector across the plane and α

is a constant angle. Since the polarization state is not defined
at the center of the profile, the function f must be chosen in
such a way that the amplitude vanishes at r = 0. The structure
in equation (1) describes a field whose polarization is linear
at any point and symmetric around the propagation axis, as
shown in figure 1, even though its amplitude may depend on
θ . The electric field lines are logarithmic spirals whose growth
parameter depends on the value of α [15], so that, by varying
α, different patterns of the polarization across the beam section
are obtained, ranging from azimuthal (when α = 0) to radial
(when α = π/2) polarization. If the function f is independent
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Figure 1. Polarization pattern of a spirally polarized field.

of θ , the beam presents the same polarization pattern across
any transverse plane in the paraxial approach [20].

Fields written as in equation (1) can always be expressed
as the sum of a radially polarized term and an azimuthally
polarized one, according to the form

E(r) = f (r, θ)

[
− sin α

(
cos θ

sin θ

)
+ cos α

( − sin θ

cos θ

)]
.

(2)
As is evident, the contributions of the radial and azimuthal
parts will change on varying α. This suggests that significant
parameters for the characterization of this kind of profile will
be those global parameters that give the radial and azimuthal
polarization contents, respectively, across the transverse
section of the beam [33].

Let us then recall the following parameters [33]:

ρ̃r = 1

P

∫ ∞

0

∫ 2π

0
ρr(r, θ) I (r, θ) r dr dθ, (3)

ρ̃a = 1

P

∫ ∞

0

∫ 2π

0
ρa(r, θ) I (r, θ) r dr dθ, (4)

σ 2
r = 1

P

∫ ∞

0

∫ 2π

0

[
ρr(r, θ) − ρ̃r

]2
I (r, θ) r dr dθ, (5)

σ 2
a = 1

P

∫ ∞

0

∫ 2π

0

[
ρa(r, θ) − ρ̃a

]2
I (r, θ) r dr dθ, (6)

with

P =
∫ ∞

0

∫ 2π

0
I (r, θ) r dr dθ, (7)

where ρr and ρa give the irradiance percentage of the radial
or azimuthal component, respectively, of the field at each
point across the beam profile. Therefore, ρ̃r and ρ̃a represent
the radial and azimuthal polarization contents of a non-
uniformly polarized beam profile, weighted with the values of
its irradiance. On the other hand, σ 2

r and σ 2
a are the variances

of ρ̃r and ρ̃a, so they give information about the uniformity of
the above polarization contents across the beam profile.

It is useful to write these parameters in terms of the local
Stokes parameters (si , i = 0, 1, 2, 3) as [33]

ρ̃r = 1

2
+ 1

2 P

∫ ∞

0

∫ 2π

0
[cos(2θ) s1(r, θ)

+ sin(2θ) s2(r, θ)] r dr dθ, (8)

ρ̃a = 1

2
− 1

2 P

∫ ∞

0

∫ 2π

0
[cos(2θ) s1(r, θ)

+ sin(2θ) s2(r, θ)] r dr dθ. (9)

In turn, the local Stokes parameters can be evaluated from the
intensity patterns across the beam profile after the insertion of
a suitably oriented quarter-wave plate and a linear polarizer
having transmission axis at different angles with respect to the
x-axis. With evident meaning of the involved symbols, we
have [35]

s0(r, θ) = I0◦(r, θ) + I90◦(r, θ), (10)

s1(r, θ) = I0◦(r, θ) − I90◦(r, θ), (11)

s2(r, θ) = I45◦(r, θ) − I135◦(r, θ), (12)

s3(r, θ) = Iλ/4,45◦(r, θ) − Iλ/4,135◦(r, θ). (13)

As can be easily seen from the above expressions, for
fields written as in equation (1) the parameters defined in
equations (3)–(6) are independent of the field amplitude
f (r, θ) and turn out to be

ρ̃r = 1
2 − 1

2 cos(2α), (14)

ρ̃a = 1
2 + 1

2 cos(2α), (15)

and
σ 2

r = σ 2
a = 0. (16)

Another useful overall parameter for characterizing
non-uniformly polarized beams is ρ̃c, which represents the
linear or circular polarization content across the beam profile,
weighted with the values of the irradiance. It is defined in terms
of the s3 Stokes parameter as [32]

ρ̃c = 1

P

∫ ∞

0

∫ 2π

0
ρc(r, θ) s0(r, θ)r dr dθ , (17)

with

ρc = s3(r, θ)

s0(r, θ)
. (18)

The parameter ρ̃c ranges from −1 for pure left-handed
circularly polarized light to +1 for pure right-handed circularly
polarized light, and the value ρ̃c = 0 corresponds to a field with
pure linear, possibly non-uniform, polarization, as is the case
of spirally polarized fields.

3. Experiment

We synthesized two different beam profiles having the form
given in equation (1). In both cases we used the optical setup
shown in figure 2.

The light beam emerging from a He–Ne laser (Spectra-
Physics 117A) is expanded, spatially filtered, and collimated
by means of the collimation system (CS). The laser beam
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Figure 2. Experimental setup for the synthesis of spirally polarized fields. CS, collimation system; F, amplitude filter; AT, azimuthal
polarization tool; R, rotator; λ/2, half-wave plate; L, imaging lens; PA, polarization analyzer; λ/4, quarter-wave plate; P, linear polarizer.

is linearly polarized along the vertical (y) direction. An
amplitude filter (F) is placed after CS to produce zero
irradiance at the center of the beam. The analytical form of
this filter is approximately t (r) = [1−exp(−r/w)4], with w ≈
1 mm. The element AT represents a tool aimed at producing an
azimuthally polarized field. We used two different tools in the
two experiments, as we shall see in the following. After AT,
a polarization rotator (R) is placed, which locally rotates the
electric field of the incident beam, then producing a spirally
polarized field [21]. It consists of two half-wave plates, whose
fast axes form the angle γ with one another. It can be easily
verified that the Jones matrix of this pair of plates is [21, 22]

R̂ =
(

cos(2γ ) − sin(2γ )

sin(2γ ) cos(2γ )

)
, (19)

and therefore it represents a rotation by 2γ of the incident
polarization.

The field emerging from the rotator is eventually imaged
onto the CCD sensor of a camera by means of the lens (L). Just
before the camera the polarization analyzer (PA), consisting in
a quarter-wave plate (λ/4) and a linear polarizer (P), is used
for the measurement of the local Stokes parameters of the field
across its transverse section.

In the first experiment, the azimuthal polarization tool
consisted in a quarter-wave phase plate followed by a dichroic
azimuthal linear polarizer (usually called an ‘axis finder’, from
Edmund Optics). The wave plate, suitably oriented, converts
the incident linear polarization into a right-handed circular one.
Since the Jones matrix of the axis finder can be written as

Â =
(

sin2 θ − cos θ sin θ

− cos θ sin θ cos2 θ

)
, (20)

disregarding the circularly symmetric amplitude factor
produced by the transparency F , as well as any other constant
factors, an output field of the type

E(r) ∝ exp(iθ)

( − sin θ

cos θ

)
(21)

is obtained. Finally, after the rotator, the Jones vector of the
synthesized field turns out to be

E(r) ∝ exp(iθ)

(− sin(θ + 2γ )

cos(θ + 2γ )

)
, (22)

which is exactly of the form in equation (1), provided that γ =
α/2 is chosen. Note that, due to the presence of the quarter-
wave plate, the irradiance profile of the field is rotationally
symmetric.

Experimental results are obtained by changing γ from 0◦
to 90◦, i.e. from azimuthal to azimuthal polarization, passing
through radial polarization, occurring when γ = 45◦. In
this way, several non-uniformly linearly polarized fields are
generated with different radial and azimuthal polarization
contents. As can be easily understood, the irradiance profile
of the synthesized field does not depend on the value of the
parameter γ . The experimental irradiance profile for α = 20◦
is reported in figure 3, where the polarization states at several
points of the profile are also shown. Similar patterns are
obtained for different values of α.

In figure 4 the experimental values of the parameters ρ̃r

and ρ̃a are represented versus the rotation angle α, together
with the theoretical curves calculated from equations (14)
and (15). The average values of the dispersions, σ 2

r and σ 2
a ,

are both equal to 0.0114 ± 0.0001.
To get further information about the spirally polarized

profile, the circular polarization content ρ̃c has been evaluated
by means of equation (17). The experimental values are
presented in figure 5 (dots) as functions of the rotation angle
α. The deviation from the theoretical prediction (zero) shows a
nonideal behavior of the axis finder. Nevertheless, the circular
polarization content is rather small, resulting in an average
value of 0.13 ± 0.01.

In the second experiment, the azimuthal polarization tool
consisted of an Arcoptix polarization converter, which locally
rotates an incident linear polarization using a liquid-crystal
device [10]. In such a case the Jones matrix of the polarization
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Figure 3. Experimental irradiance and polarization pattern in the first
experiment for α = 20◦. The transverse size of the shown profile is
about 1 cm.

Figure 4. Experimental values of parameters ρ̃r (circles) and ρ̃a

(squares) versus the field rotation angle, α, together with their
theoretical values (solid curves), for the first experiment (fields
synthesized by means of an axis finder).

converter can be evaluated as

Â =
(

cos θ − sin θ

sin θ cos θ

)
, (23)

so that the output field is given by

E(r) ∝
( − sin θ

cos θ

)
. (24)

Figure 5. Experimental values of parameter ρ̃c versus α. Dots
correspond to the first experiment and circles to the second one.

Figure 6. Experimental irradiance and polarization pattern in the
second experiment for α = 20◦. The transverse size of the shown
profile is about 0.5 cm.

Finally, after the rotator, the electric field turns out to be

E(r) ∝
( − sin(θ + 2γ )

cos(θ + 2γ )

)
, (25)

which is similar to equation (22), but without the phase factor
exp(iθ).

The irradiance profile and the polarization pattern for α =
20◦ is shown in figure 6, while in figure 7 the experimental
values of ρ̃r and ρ̃a are plotted versus α (solid curves represent
theoretical values). The average values of the variances σ 2

r and
σ 2

a are both equal to 0.049 ± 0.002. In this case the variances
are slightly higher than for the first experiment, showing a less
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Figure 7. Experimental values of parameters ρ̃r (circles) and ρ̃a

(squares) versus the field rotation angle, α, together with their
theoretical values (solid curves), for the second experiment (fields
synthesized by means of liquid-crystal polarization converter).

uniform distribution of the radial and azimuthal polarization
contents across the beam profile.

The experimental values of the circular polarization
content ρ̃c are shown in figure 5 (circles) as functions of the
rotation angle α. Even in this case a slight deviation from
the theoretical value (zero) can be appreciated, resulting in an
average value of 0.08 ± 0.01. As can be seen from figure 5,
the values are lower for the second experiment than for the first
one, so the synthesized beam produced using the polarization
converter is globally more linearly polarized than the other one.
Such results give an account of the differences between the
polarization patterns shown in figures 3 and 6.

4. Conclusions

Two experimental procedures have been used to synthesize
beams with spirally polarized transverse patterns. The
techniques make use of an axis finder and a polarization
converter, respectively, together with a polarization rotator.
The generated fields have been characterized by means of some
recently introduced global parameters, aimed at characterizing
non-uniformly totally polarized light beams. Experimental
results show good agreement between theory and experiment
for both the techniques.
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