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Abstract
For an electromagnetic stochastic beam, the choice of the mathematical structure of the
cross-spectral density matrix is limited by the constraint of non-negative definiteness. We
present a sufficient condition for building these matrices in such a way that this constraint is
automatically satisfied. This allows us to put into evidence that electromagnetic beams can
exhibit very peculiar correlation properties, some of which would not be encountered in scalar
treatments. These results are illustrated by means of a number of examples.
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1. Introduction

It is well known that correlation functions for optical
fields cannot be chosen at will because of the non-negative
definiteness constraints. Let us recall such a constraint for the
scalar case. We denote by W (ρ1,ρ2) the cross-spectral density
(CSD) ([1], section 4.1) at two typical points ρ1 and ρ2 of
a planar source, omitting, for brevity, the dependence on the
temporal frequency. Next, we consider the quadratic form

Q =
∫ ∫

f ∗(ρ1) f (ρ2)W (ρ1,ρ2)d
2ρ1d2ρ2, (1)

where f (ρ) is an arbitrary function, the integrals are extended
across the source plane, and the asterisk denotes the complex
conjugate. Then, the non-negative definiteness constraint
means that, for any choice of f , the inequality

Q ! 0, (2)

has to be satisfied by any genuine CSD. To ascertain whether
this inequality is met for a given form of W is not trivial,
because of the arbitrariness in the choice of f . In fact, it
was shown that even plausible forms of the CSD can violate
the above constraint [2]. A notable exception is constituted
by Schell-model sources ([1], section 5.3). For such sources,
the normalized form of W , namely the spectral degree of
coherence ([1], section 4.2), is shift-invariant. It turns out that

the non-negative definiteness for scalar Schell-model sources is
ensured if the spectral degree of coherence has a non-negative
Fourier transform [3]. In the general case, however, things
are not that easy. A sufficiency condition for satisfying the
constraint in equation (2) has recently been presented in [2].
More explicitly, it was found that W is a bona fide CSD if it
can be expressed as follows

W (ρ1,ρ2) =
∫

p(v)H ∗(ρ1,v)H (ρ2,v)d2v, (3)

where p(v) is an arbitrary non-negative weight function and
H (ρ,v) is an arbitrary kernel. A particular case of equation (3)
is obtained when H (ρ,v) = V (ρ − v), where V can be
thought of as a coherent field distribution. In this case,
the source associated with equation (3) is a superposition of
mutually shifted and uncorrelated replicas of a given field. This
type of superposition was first used in [4] and [5], and lately
developed in [6, 7]. In what follows, for convenience, we shall
loosely refer to equation (3) as the superposition rule.

It is worthwhile to recall that any genuine CSD is
endowed, according to the definition of the CSD, with the
Hermiticity property, i.e.,

W (ρ2,ρ1) = W ∗(ρ1,ρ2). (4)

In physical terms, this means that the interchange of points ρ1
and ρ2 leads to a phase reversal, while leaving the modulus
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of the CSD unchanged. In other words, the two points are
essentially equivalent.

In the present paper, we shall first extend the condition
in equation (3) to the electromagnetic case, so that we will
establish a superposition rule for CSD matrices. Then, we
will discuss some peculiar features of the resulting constructed
CSD matrices. In particular, we shall underline that the two
points can play quite different roles. A number of examples
will help to epitomize these issues. The significant case
of electromagnetic Gaussian beams with partial coherence
and partial polarization, generally quoted as electromagnetic
Gaussian Schell-model beams [8–12], will also be touched
upon. We shall see how the recipe that we are going to derive
permits a safe construction of such beams, which are specified
by a high number of parameters, without fear of violating the
non-negative definiteness constraint.

The following notations will be used in the paper

rect(t) =
{

1, |t| " 1/2

0, |t| > 1/2;

step(t) =
{

1, t ! 0

0, t < 0;
sinc(t) = sin π t

π t
.

(5)

2. Non-negative definiteness condition for
cross-spectral density matrices

Let us denote by Ŵ (ρ1,ρ2) the CSD matrix ([1], section 9.1)
at points ρ1,ρ2 in the source plane. More explicitly, we let

Ŵ (ρ1,ρ2) =
[

Wxx (ρ1,ρ2) Wxy(ρ1,ρ2)

Wyx(ρ1,ρ2) Wyy(ρ1,ρ2)

]
. (6)

The matrix elements are given by

Wαβ(ρ1,ρ2) = 〈E∗
α(ρ1)Eβ(ρ2)〉; (α = x, y; β = x, y),

(7)
where Eα(ρ) is the fluctuating electric field component along
the α-axis at point ρ and the angular brackets denote an
ensemble average. Even in this case, the frequency dependence
is not made explicit. From now on, we shall use the symbols α

and β as indexes, each of which can be either x or y.
In order to recall the non-negative definiteness condition,

we define the quadratic form

Q =
∑

α

∑

β

∫ ∫
f ∗
α (ρ1) fβ(ρ2)Wαβ(ρ1,ρ2)d

2ρ1d2ρ2, (8)

where fx(·) and fy(·) are two arbitrary (well-behaving)
functions. The non-negative definiteness condition is still
expressed by equation (2), i.e., for any choice of fx and fy ,
Q must be non-negative ([13], section 6.6.1).

In order to extend the superposition rule specified by
equation (3), we give the following form to the elements of
the CSD matrix

Wαβ(ρ1,ρ2) =
∫

pαβ(v)H ∗
α (ρ1,v)Hβ(ρ2,v)d2v, (9)

where pαβ(v) are the elements of the following weight matrix

p̂(v) =
[

pxx(v) pxy(v)
p∗

xy(v) pyy(v)

]
, (10)

while Hx(ρ,v) and Hy(ρ,v) are two arbitrary kernels. In
order to see the features of the pαβ elements, we first note that
Wxx and Wyy have the same nature as scalar CSDs. In fact, if
we let the beam pass through a linear polarizer aligned to the
α-axis, the outcoming field is fully specified by the scalar CSD
Wαα . Accordingly, the diagonal elements of the p̂ matrix must
satisfy the conditions

pαα(v) ! 0. (11)

Now, let us insert the expressions from equation (9) into (8).
Interchanging the order of integrations, this gives

Q =
∑

α

∑

β

∫
pαβ(v)h∗

α(v)hβ(v)d2v, (12)

where

hα(v) =
∫

fα(ρ)Hα(ρ,v)d2ρ. (13)

Taking inequalities in equation (11) into account, it is easily
seen that Q will be non-negative provided that the further
requirement

pxx (v)pyy(v) − |pxy(v)|2 ! 0, (14)

is satisfied for any v. The pair of equations (11) and (14)
imply that, for any v, the matrix p̂ is non-negative definite and
thus the quantity Q given by equation (12) is non-negative.
To gain a deeper insight into the present problem, another
way to derive these results is summarized in the appendix.
In conclusion, constructing Wαβ according to equation (9),
which will be called the generalized superposition rule, ensures
that the resulting CSD matrix satisfies the constraint of non-
negative definiteness. The arbitrariness of the choice of p̂
(subject to equations (11) and (14)) and Hα will allow us to
devise a wealth of genuine CSD matrices.

3. The kernels

Similarly to the scalar case [2], equation (9) can be intuitively
read as describing the CSD matrix at the output of an
optical system endowed with impulse responses Hx and Hy

with respect to the two field components and fed by a
spatially incoherent source, whose local polarization matrix is
proportional to p̂(v). Differences between Hx and Hy can
be due to some kind of anisotropic behaviour of the optical
system. For example, the system could be based on an
interferometer in which orthogonal states of polarization are
sent along different arms, where they encounter distinct optical
elements. As far as the mathematical features of the CSD
matrix are concerned, however, Hx and Hy simply represent
kernels of linear transformations (with respect to v). We then
have plenty of choices for such kernels and each choice is likely
to lead to distinct classes of CSD matrices. Fresnel, Fourier,
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Laplace, Hankel, and Mellin are examples of transforms that
immediately come to mind. While it would be hopeless to give
even a partial account of all of the cases that imagination might
suggest, some significant features can be explored by focusing
attention on a single type of integral transform.

A simple and significant class of CSD matrices is obtained
by giving Hα a Fourier-like structure. More explicitly, we let

Hα(ρ,v) = Fα(ρ) exp[−2π igα(ρ) · v], (15)

where gα are arbitrary vectorial real functions and Fα are
possible complex profile functions. On inserting from
equation (15) into (9) we obtain

Wαβ(ρ1,ρ2) = F∗
α (ρ1)Fβ(ρ2) p̃αβ[gβ(ρ2) − gα(ρ1)], (16)

where the tilde denotes Fourier transformation. Since gα is
arbitrary, it is clear that the elements Wαβ can have rather
sophisticated structures. Let us begin with the simplest case,
namely

gα(ρ) = aρ, (17)

where a is a constant. Then, equation (16) becomes

Wαβ(ρ1,ρ2) = F∗
α (ρ1)Fβ(ρ2) p̃αβ[a(ρ2 − ρ1)], (18)

so that the source is of the vectorial Schell-model type ([1],
section 9.4). This particular case has already been treated
in [14].

In principle, we could choose gα in equation (15) as
bizarre as we like and in any case we would obtain a valid CSD
matrix. A simple choice, however, will suffice to show some
novelty elements. Let

gα(ρ) = aαρ, (19)

where aα are constants. Now, equation (16) becomes

Wαβ(ρ1,ρ2) = F∗
α (ρ1)Fβ(ρ2) p̃αβ(aβρ2 − aαρ1), (20)

or, more explicitly

Wxx (ρ1,ρ2) = F∗
x (ρ1)Fx(ρ2) p̃xx [ax(ρ2 − ρ1)],

Wyy(ρ1,ρ2) = F∗
y (ρ1)Fy(ρ2) p̃yy[ay(ρ2 − ρ1)],

Wxy(ρ1,ρ2) = F∗
x (ρ1)Fy(ρ2) p̃xy(ayρ2 − axρ1).

(21)

It is seen that, if ax %= ay , the Fourier transforms appearing in
the diagonal elements have different scale factors, but in any
case they depend on ρ2 − ρ1 only. In other words, Wxx and
Wyy are the same as scalar CSDs of the Schell-model type.
Something different happens for Wxy . In fact, since ρ1 and
ρ2 can be multiplied by different factors, we see that adding a
term, say δρ, once to ρ1 and another time to ρ2, may produce
different effects. As a limiting example, let ax %= 0 and ay = 0.
Then, Wxy becomes independent of ρ2. This means that while
ρ1 and ρ2 play essentially the same role as far as the diagonal
elements are concerned, things can go differently for the off-
diagonal elements. A comment is in order. As we already
noted, in scalar theory of coherence, we are accustomed to
think that, up to a phase reversal, points ρ1 and ρ2 can be

interchanged. This continues to be true for diagonal elements.
In a sense, the two points cannot be distinguished from one
another. Apparently, a different behaviour can be exhibited
by off-diagonal elements. A spontaneous question is: How
can we distinguish point ρ1 from point ρ2? The answer is
found at once if we consider how Wxy is to be measured [15].
Essentially, points ρ1 and ρ2 can be distinguished from one
another because the first is covered with a linear polarizer
aligned to the x-axis whereas the second has a similar polarizer
aligned to the y-axis. (One of the polarizers is then followed by
a π/2 rotator, so that interference can take place.) Although the
different roles that ρ1 and ρ2 can play in off-diagonal elements
could be seen in other known CSD matrices, the phenomenon
seems to be particularly evident in the present example.

Another possibility is worth mentioning. Let ax = −ay .
Then the Fourier transform appearing in Wxy depends on ρ2 +
ρ1 instead of being shift-invariant as it occurs for the diagonal
elements. Finally, another interesting case is obtained when the
vector gα(ρ) that appears in equation (15) is orthogonal to ρ
and proportional to its length. As we shall see in the examples,
this may lead to twist phenomena.

The above remarks may give a faint idea of how rich the
structure of a CSD matrix can be. On the other hand, one
would hardly write complicated forms for the matrix elements
without possessing a guarantee that they have physical sense.
The sufficient condition established in section 2 affords a safe
guide for investigating new structures of the CSD matrix.

A note about the physical dimensions of the variable v
should be made. Such dimensions depend on the form of
the kernels. For example, if the kernels represent a displaced
version of some basic coherent contribution (see section 1), v
has the same dimensions as ρ, whereas, for a Fourier kernel v
may have dimensions of a spatial frequency.

4. Elementary examples

Some simple examples can help to illustrate the results of the
previous sections. We shall begin with a pair of cases in which
the quantities of interest depend on one transverse coordinate
only. Denoting by (ξ, η) and (u, w) the Cartesian coordinates
associated with ρ and v, respectively, we are going to assume η

and w to be immaterial. For our first example, we shall assume
that Hx and Hy have, apart from an arbitrary common profile
factor F , the form of simple Fourier exponentials with opposite
sign in the exponent, namely

Hx(ξ, u) = F(ξ) exp(−2π iuξ);
Hy(ξ, u) = F(ξ) exp(2π iuξ).

(22)

Furthermore, we suppose all of the elements of the matrix p̂ to
equal

pαβ(u) = S0 rect(u/a), (23)

where S0 and a are positive constants. Then, using
equation (9), we easily find

Wαα(ξ1, ξ2) = S0 F∗(ξ1)F(ξ2)sinc[a(ξ2 − ξ1)]. (24)
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We then see that the diagonal elements of the CSD matrix
possess a Schell-model structure. It is not so for the off-
diagonal elements. In fact, the following expression is easily
derived for Wxy

Wxy(ξ1, ξ2) = S0 F∗(ξ1)F(ξ2)sinc[a(ξ2 + ξ1)]. (25)

There is perfect correlation between the x- and the y-
component whenever we let ξ1 = −ξ2. It is worthwhile to
write the local polarization matrix, which turns out to be

Ŵ (ξ, ξ) = S0|F(ξ)|2
[

1 sinc(2aξ)
sinc(2aξ) 1

]
. (26)

Since the diagonal elements are identical, the (spectral) degree
of polarization P ([1], section 9.2) depends essentially on the
off-diagonal elements. Using equation (26) we find

P(ξ) = |sinc(2aξ)|, (27)

so that the field is polarized only for a certain extent around
the origin of the ξ -axis. Let us further recall the recently
introduced [16, 17] degree of cross-polarization, say Pc,
defined as

Pc(ρ1,ρ2) =
√

1 − 4 det Ŵ (ρ1,ρ2)

[tr Ŵ (ρ1,ρ2)]2
, (28)

which reduces to the ordinary (spectral) degree of polarization
P when ρ1 = ρ2. If we apply this definition to our present
example, we find

Pc(ξ1, ξ2) =
∣∣∣∣
sinc[a(ξ2 + ξ1)]
sinc[a(ξ2 − ξ1)]

∣∣∣∣. (29)

In particular, letting ξ2 = −ξ1, we obtain

Pc(ξ1,−ξ1) = 1
|sinc(2aξ1)|

, (30)

which is always greater than or equal to one. It is known, in
fact, that the degree of cross-polarization has no upper bound.

We can wonder how this type of source could be
physically realized. To answer this question, we note that,
disregarding the profile function F , for each value of u
(|u| < a/2) we have a pair of plane waves, as indicated by
equation (22). One of them is linearly polarized along the x-
axis, while the other is similarly polarized along the y-axis.
They are perfectly correlated since, according to equation (23),
pxy = S0, like pxx and pyy. Furthermore, the two waves
have opposite components of the wavevector along the ξ -axis.
The various pairs are then superposed without correlation. It
should not be difficult to devise an experimental apparatus for
obtaining this type of superposition by using an interferometric
arrangement similar to the one suggested for scalar specular
sources [18].

We shall now discuss another example by considering the
following structures for the kernels

Hx(ξ, u) = Fx(ξ) exp[−τ (u − ξ)]step(u − ξ);
Hy(ξ, u) = Fy(ξ) exp[τ (u − ξ)]step(ξ − u),

(31)

where τ is a positive constant. They could be realized as
coherent impulse responses in optical systems with suitable
complex pupil functions ([19], section 8.3). We further assume
the elements pαβ to be identically equal to 2τ S0. Then, the
diagonal elements of the CSD matrix turn out to be

Wαα(ξ1, ξ2) = S0 F∗
α (ξ1)Fα(ξ2) exp[−τ |ξ2 − ξ1|]. (32)

Taking the van Cittert–Zernike theorem into account ([1],
section 3.2; [20]), we understand that they have the same form
as the scalar CSD of a secondary source put at a suitable
distance from a primary, spatially incoherent source, whose
intensity profile has a Lorentzian shape. This secondary source
is covered by a filter with transmission function Fα(ξ), thus
realizing a Schell-model source. On the other hand, the off-
diagonal elements are

Wxy(ξ1, ξ2) = 2S0τ F∗
x (ξ1)Fy(ξ2) (ξ2 − ξ1)

× exp[−τ (ξ2 − ξ1)] step(ξ2 − ξ1). (33)

Here, something peculiar occurs. Because of the presence of
the step function, a correlation between the x-component of
the electric field at point ξ1 and the y-component at point ξ2

may exist only if point ξ2 is on the right of point ξ1. We may
notice that in the present example the kernel has a Laplace-like
structure.

5. The Gaussian case

Here, we want to discuss a class of cases in which the elements
of the weight matrix have a Gaussian shape. Furthermore, the
kernels also include a Gaussian term. This class encompasses
the so-called electromagnetic Gaussian Schell-model beams
([1], section 9.4; [8–12]), whose CSD matrix has the elements

Wαβ(ρ1,ρ2) = BαβCαCβ

× exp
[
− ρ2

1

4σ 2
α

− ρ2
2

4σ 2
β

− (ρ2 − ρ1)
2

2δ2
αβ

]
, (34)

where Bαα = 1, while Bxy which is a complex number,
satisfies the inequality |Bxy | " 1.4 All the other new
symbols denote positive quantities. It is seen that the matrix
elements are characterized by the remarkable number of 9
parameters (the modulus and the phase of Bxy , Cx , Cy , σx ,
σy , δxx , δyy , δxy ). If these parameters are chosen at will
it may well happen that the resulting beam is physically
senseless. Finding conditions for satisfying the non-negative
definiteness requirement turned out to be non-trivial [8, 11].
Now, we want to examine this subject on the grounds of
our generalized superposition rule. To extend the previous
treatment, anisotropic features will be introduced. We begin
by giving the following expressions for the elements of p̂

pαβ(v) = Aαβ exp(−γαβu2 − εαβw2). (35)

Here, Axx and Ayy are non-negative constants, whereas Axy =
A∗

yx may be complex. Furthermore, all of the γαβ and εαβ

are non-negative. It is seen that equation (11) is met. As

4 A more stringent upper bound has been established in [14].
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for equation (14), it is easy to see that it is satisfied under the
following conditions

|Axy |2 " Axx Ayy,

γxy ! γxx + γyy

2
; εxy ! εxx + εyy

2
.

(36)

Let us now consider the kernels. We assume them to be

Hα(ρ,v) = Fα(ρ)

× exp[−bα(ξ − u)2−cα(η − w)2−2π i gα(ρ) ·v], (37)

where bα and cα are non-negative constants. It is worthwhile
to reckon the number of parameters that may be necessary
to specify the CSD matrix. In equation (35), there are 10
parameters (Axx , Ayy, the modulus and the phase of Axy ,
γxx , γyy, γxy , εxx , εyy, εxy ), subject to the constraints in
equations (36). Then, there are the 4 parameters bα and cα .
Further parameters will be present in the expressions for Fα

and gα . Even if only one parameter could be enough for each
of them, we would have reached a total of 18 quantities. It
is also to be observed that the elliptical structures associated
with equations (35) and (37) have their axes aligned to those
of the reference frame. In the most general case, such elliptical
structures could be rotated with respect to one another. We
could align the reference axes to those of one of the ellipses,
but we would need two angles to specify the other two. In
conclusion, the number of parameters appearing in the CSD
matrix could easily exceed the value of 20. Choosing in
a random way so many quantities without incurring some
violation of the non-negative definiteness condition would be
unlikely. The virtue of the generalized superposition rule is that
such choice can be done without problems by only satisfying
equations (36).

A discussion of the general case would be very long and is
outside the scope of this paper. We shall limit ourselves to the
simple isotropic case

γαβ = εαβ = 0; bx = by = cx = cy = b. (38)

Then, on evaluating equation (9) we find

Wαβ(ρ1,ρ2) = π Aαβ F∗
α (ρ1)Fβ(ρ2)

2b
exp

[
−b(ρ2 − ρ1)

2

2

]

× exp
{−π2

2b
[gβ(ρ2) − gα(ρ1)]2

− π i(ρ1 + ρ2) · [gβ(ρ2) − gα(ρ1)]
}
. (39)

We shall first consider the case

gx(ρ) = gy(ρ) = aρ, (40)

which leads to the following matrix elements

Wαβ(ρ1,ρ2) = π Aαβ F∗
α (ρ1)Fβ(ρ2)

2b
exp

[
−b(ρ2 − ρ1)

2

2

]

× exp
{−π2a2

2b
(ρ2 − ρ1)

2 − π ia(ρ2
2 − ρ2

1)

}
. (41)

Now, let a = 0 and choose Fα of Gaussian shape.
Then, equation (41) acquires the same mathematical form

as equation (34) and we have the electromagnetic Gaussian
Schell-model beam. In addition to the shift-invariant terms,
the matrix elements contain an exponential with an imaginary
exponent. If a < 0, terms of this type appear when a Gaussian
Schell-model beam has propagated along some distance from
the plane where the intensity distribution has its minimum
variance ([1], section 9.4; [21]). This plane is conventionally
called the waist plane. Accordingly, when a < 0, equation (41)
can be thought of as pertaining to a Gaussian Schell-model
beam whose waist plane lies in the half-space z < 0. On
the other hand, if a > 0, the opposite sign in the imaginary
exponent gives rise to a beam that is converging to its waist
plane, located in the half-space z > 0.

As a second choice, we let

gx(ρ) = aρ; gy(ρ) = −aρ. (42)

The resulting diagonal elements of the CSD matrix are

Wxx (ρ1,ρ2) = π Axx F∗
x (ρ1)Fx(ρ2)

2b
exp

[
−b(ρ2 − ρ1)

2

2

]

× exp
{−π2a2

2b
(ρ2 − ρ1)

2 − π ia(ρ2
2 − ρ2

1)

}
. (43)

Wyy(ρ1,ρ2) =
π Ayy F∗

y (ρ1)Fy(ρ2)

2b
exp

[
−b(ρ2 − ρ1)

2

2

]

× exp
{−π2a2

2b
(ρ2 − ρ1)

2 + π ia(ρ2
2 − ρ2

1)

}
. (44)

In order to appreciate the meaning of equations (43) and (44),
let us suppose again Fx and Fy to be Gaussian shaped. Each of
these two elements has the form pertaining to a scalar Gaussian
Schell-model beam ([1], section 5.3). However, because of
the opposite sign of the imaginary terms within the exponents,
when a > 0, Wxx describes a beam whose waist is in the half-
space z > 0, while Wyy refers to a beam having its waist in the
half-space z < 0.

For the off-diagonal elements, we easily find

Wxy(ρ1,ρ2) = π Axy F∗
x (ρ1)Fy(ρ2)

2b
exp

[
−b(ρ2 − ρ1)

2

2

]

× exp
{−π2a2

2b
(ρ1 + ρ2)

2 + π ia(ρ1 + ρ2)
2
}
. (45)

This no longer has a Schell-model structure because of the
presence of the term (ρ1 + ρ2)

2 in the second exponential
function. Therefore, the generalized superposition rule can
generate new types of electromagnetic Gaussian beams.

The third choice we make for gα is

gx(ρ) = gy(ρ) = aν, (46)

where ν has the same length as ρ, but is orthogonal to it, i.e.,
|ν| = |ρ| and ν · ρ = 0, as briefly mentioned in section 3.
Simple calculations lead to the following expression for the
elements of the CSD matrix.

Wαβ(ρ1,ρ2) = π Aαβ F∗
α (ρ1)Fβ(ρ2)

2b
exp

[
−b(ρ2 − ρ1)

2

2

]

× exp
{−π2a2

2b
(ρ2 − ρ1)

2 − 2π ia|ρ1 × ρ2|
}
. (47)
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Here, we do have Schell-model correlation functions, but with
a phase twist [22–24]. It is of interest to note that such twist
does not require the functions Fα to be necessarily Gaussian.
Thus, the present example generalizes the model introduced
in [22].

6. Propagation effects

In the paraxial approximation, the field propagated at a distance
z from the source plane possesses a CSD matrix whose
elements, say Wzαβ(r1, r2), are given by

Wzαβ(r1, r2) =
∫ ∫

Wαβ(ρ1,ρ2)K ∗
z (ρ1, r1)

× Kz(ρ2, r2)d2ρ1d2ρ2, (48)

where the free propagation kernel Kz is given by ([1],
section 9.4)

Kz(ρ, r) = − ieikz

λz
exp

[
ik
2z

(ρ − r)2
]
. (49)

Here, k = 2π/λ, with λ being the wavelength. On inserting
equations (48) and (49) into equation (9), we easily obtain

Wzαβ(r1, r2) =
∫

pαβ(v)H ∗
zα(r1,v)Hzβ(r2,v)d2v, (50)

where we let

Hzα(r,v) =
∫

Hα(ρ,v)Kz(ρ, r)d2ρ. (51)

It is seen that the structure of equation (50) is identical to that of
equation (9) except that Hα is replaced by Hzα, which plays the
role of a propagated kernel. While this could be expected when
Hα represents a coherent field distribution (see the comments
following equation (3)), it is slightly less obvious when Hα is
the kernel of a general integral transform.

7. Conclusions

In this paper, we saw the extension to the electromagnetic
case of a sufficient condition for non-negative definiteness of a
scalar CSD [2]. This affords a simple recipe to devise genuine
CSD matrices. Its application leads us to put into evidence that
general CSD matrices can be endowed with new and unfamiliar
properties, as we showed through several examples.

Appendix

In this appendix, we will derive the non-negative definiteness
condition for CSD matrices in a somewhat different way.

As a natural generalization of the (scalar) superposition
rule given by equation (3), we introduce the expression

Ŵ (ρ1,ρ2) =
∫

Ĥ †(ρ1,v) p̂(v)Ĥ (ρ2,v)d2v, (A.1)

where the dagger denotes the Hermitian adjoint, p̂(v) is given
by equation (10), and

Ĥ(ρ,v) =
[

Hx(ρ,v) 0
0 Hy(ρ,v)

]
, (A.2)

with Hx(ρ,v) and Hy(ρ,v) being two arbitrary kernels. It
is to be noted that equation (A.1) is essentially the same
as equation (9). The quadratic form for the non-negative
definiteness condition given by equation (8) may be written,
using a matrix formulation, in the form

Q =
∫ ∫

f̂ †(ρ1)Ŵ (ρ1,ρ2) f̂ (ρ2)d
2ρ1d2ρ2, (A.3)

where

f̂ (ρ) =
[

fx (ρ)
fy(ρ)

]
, (A.4)

with fx(ρ) and fy(ρ) being two arbitrary (well-behaving)
functions.

On substituting from equation (A.1) into (A.3) and
interchanging the order of integrations, we obtain for Q the
expression

Q =
∫

ĥ†(v) p̂(v)̂h(v)d2v, (A.5)

where the 2 × 1 ĥ(v) matrix is given by

ĥ(v) =
∫

Ĥ(ρ,v) f̂ (ρ)d2ρ. (A.6)

Obviously equations (A.5) and (A.6) are essentially the same
as equations (12) and (13), respectively.

The quantity Q given by equation (A.5) is non-negative,
i.e.,

Q ! 0, (A.7)

if the Hermitian matrix p̂(v) is non-negative definite. It is
widely known that the Hermitian matrix p̂(v) is non-negative
definite if and only if all of the principal minors of the matrix
are non-negative, i.e.,

pxx(v) ! 0, pyy(v) ! 0,

pxx (v)pyy(v) − |pxy(v)|2 ! 0,
(A.8)

for any v. Accordingly, the quantity Q given by equation (A.5)
and thus by equation (A.3) is non-negative, provided that
equations (A.8) is satisfied for any v.

To conclude, the CSD matrix constructed in accordance
with the recipe given by equation (A.1) is necessarily non-
negative definite, namely, it is physically realizable, as far as
the condition in equations (A.8) for p̂(v) is satisfied.
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