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Partially correlated thin annular sources: the
scalar case
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Thin annular sources, either coherent or completely incoherent from the spatial standpoint, have played a sig-
nificant role in the synthesis of diffraction-free and J0-correlated fields, respectively. Here, we consider thin
annular sources with partial correlation. A scalar description is developed under the assumption that the cor-
relation function between two points depends on their angular distance only. We show that for any such source
the modal expansion can easily be found. Further, we examine how the correlation properties of the radiated
fields change on free propagation. We also give a number of examples and present possible synthesis schemes.
© 2008 Optical Society of America
OCIS codes: 030.1640, 260.5430.
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. INTRODUCTION
hin annular apertures have been used to synthesize two

mportant classes of optical beams. In fact, when illumi-
ated with spatially coherent light, a thin annular aper-
ure can be used to produce diffraction-free beams [1,2],
hereas under spatially incoherent illumination, it gives

ise to J0-correlated fields [3,4].
In the present paper we investigate the properties of

ources constituted by thin annular apertures illumi-
ated by partially coherent light. We will develop a scalar
reatment, while the extension to the electromagnetic
ase will be considered elsewhere. We shall refer to the
ase in which the correlation functions between two
oints depend on their angular distance only, i.e., when
uch functions are shift-invariant in the angular sense.
e shall show that the pertinent modal expansions [5,6]

an be found by elementary means. Further, we shall see
ow to evaluate the correlation functions of the fields
ropagated away from such sources.
Since the sources of our interest are essentially one-

imensional, a comparison can be made with the case of a
ectilinear geometry. In such case, shift-invariant correla-
ion functions correspond to homogeneous sources [7]. As
s well known, such sources are considered to be rather
nphysical, because they should have an infinite extent.
s a matter of fact, this is why quasi-homogeneous
ources were introduced [8]. Furthermore, shift-invariant
orrelation functions do not belong to the class of Hilbert–
chmidt kernels, so that the theory of modal expansion
annot be applied. Of course, such limitations do not ap-
ly to the case of angular shift-invariance.
In a sense, our sources are obtained by wrapping a rec-
1084-7529/08/112826-7/$15.00 © 2
ilinear source around a circle, something reminiscent of
he Born–von Karman boundary conditions for an ideal
rystal. This leads to sources whose correlation functions
re angularly periodic. Then, the Fourier series can be
sed as the basic analytical tool. In fact, it is this tool that
llows us to determine the modal expansions as well as
he expressions for the propagated fields. From the ex-
erimental point of view, we shall see how these sources
ould be synthesized.

The following definitions of functions will be used
hroughout the paper:

rect�x� = �1 �x� � 1/2

0 �x� � 1/2� ,

tri�x� = �1 − �x� �x� � 1

0 �x� � 1� ,

sinc�x� =
sin��x�

�x
,

dirN�x� =
1

2N + 1

sin��2N + 1�x/2�

sin�x/2�
. �1�

he names of the first three functions are rather familiar.
s for the latter, it arises from this function’s association
ith the name of Dirichlet.
008 Optical Society of America



2
W
u
t
p
p

w
q
a
a
a
d
d
h
s

n
q

h

f
t
t

w
r
t

t
a
g
a
a

a
=
f
i

w
a
p
r
t
s
t
r
s

w
s
i
r

S
a
a
b
r
t
a

s
a
T
t
o
w
c
k

c
o
o
f

w

w
t
f
f

w
t
n
s

i
w
F

Gori et al. Vol. 25, No. 11 /November 2008 /J. Opt. Soc. Am. A 2827
. MODAL ANALYSIS
e shall describe the scalar spatial coherence properties

sing the mutual intensity [9], say J��1 ,�2 ,z�, between
wo points specified by the vectors �1 and �2 across the
lane z=constant. The mutual intensity across the source
lane is defined as

J��1,�2,0� = �V��1,0,t�V*��2,0,t�	, �2�

here V�� ,z , t� is the scalar analytic signal describing the
uasi-monochromatic field at point �� ,z� and time t. By
ssuming the process to be stationary and ergodic, the
ngle brackets can be thought of as denoting a time aver-
ge. It should be noted that the analysis we are going to
evelop could be based on the use of the cross-spectral
ensity [5,6]. In the synthesis schemes, however, we will
ave to deal with temporal averages, so the mutual inten-
ity seems to be a more suitable tool.

Let us now recall that the mutual intensity has to be a
onnegative definite kernel [5,10]. This means that the
uadratic quantity,

Q =

 J��1,�2,0�g*��1�g��2�d2�1d2�2, �3�

as to satisfy the condition

Q � 0 �4�

or any choice of the (well-behaving) function g���. We fur-
her recall that by modal expansion we essentially mean
he Mercer’s series [5]

J��1,�2,0� = �
n

�n�n��1��n
*��2�, �5�

here �n and �n denote eigenvalues and eigenfunctions,
espectively, of the homogeneous Fredholm integral equa-
ion


 J��1,�2,0����2�d2�2 = ����1�, �6�

he integral being extended to the source plane. In Eq. (5),
typical eigenfunction (as well as the corresponding ei-

envalue) is assumed to be specified by a single index n,
lthough for a planar two-dimensional source, two indices
re generally used.
We now refer to sources in the form of an infinitely thin

nnulus. Using polar coordinates, we let �j= ��j ,�j�, �j
1,2�, and describe the annulus by means of radial delta

unctions. Accordingly, we write an angularly shift-
nvariant mutual intensity as

J��1,�2,0� = K	��1 − a�	��2 − a�Ja��1 − �2�, �7�

here K is a positive constant and a is the radius of the
nnulus. It will be apparent later on (see Section 4 on
ropagation) that K has dimensions of an area. The cor-
elation properties along the annulus are accounted for by
he the shift-invariant function Ja��1−�2�, whose dimen-
ions are those of a mutual intensity. It is with this func-
ion that we shall be mainly concerned. We shall loosely
efer to it as the mutual intensity although, strictly
peaking, the latter is given by Eq. (7).

Because of the basic relation
J��2,�1,0� = J*��1,�2,0�, �8�

e see that Ja is Hermitian. Note that the optical inten-
ity along the annulus is proportional to Ja�0� and, hence,
s uniform. We shall further suppose Ja to possess a Fou-
ier series expansion as

Ja��1 − �2� = �
n=−





�n exp�in��1 − �2��. �9�

ince the function Ja�·� is Hermitian, the coefficients �n
re real. Furthermore, in order to represent a bona fide
ngular, shift-invariant correlation function, Ja must also
e nonnegative definite. On invoking the Bochner theo-
em [11], and thanks to the periodicity of Ja, it turns out
hat the necessary and sufficient condition for this is that
ll Fourier coefficients �n be nonnegative.
We now see that Eq. (9) can be read as a modal expan-

ion. The orthonormal eigenfunctions are exp�in�� /�2�,
nd the associated (nonnegative) eigenvalues are 2��n.
his is due to the angular shift-invariance of the correla-

ion function (see also [12]). Let JR��12� be the restriction
f the periodic function Ja��12� to the interval �−� ,��,
here, for brevity, we let �12=�1−�2. Then, the �n coeffi-

ients, which, for a Hermitian function, have the well-
nown expression

�n =
1

2�



−�

�

Ja��12�exp�− in�12�d�12

=
1

2�



−�

�

RJa��12�exp�− in�12��d�12, �10�

oincide, up to a proportionality factor, with the samples
f the one-dimensional Fourier transform (FT from now
n) of JR, taken at a distance 1/ �2�� from one another. In
act, we have

J̃R� n

2�
� =


−�

�

Ja��12�exp�− in�12�d�12 = 2��n, �11�

here the tilde denotes FT.
This remark furnishes a sufficient criterion to decide

hether a given form of Ja corresponds to a genuine mu-
ual intensity. It is so whenever the FT of the truncated
unction JR is everywhere nonnegative. For instance, the
unction

JR��12� = I0 tri��12

�
� , �12�

here I0 is a positive constant and 0��, can be surely
aken as a bona fide mutual intensity because its FT is
owhere negative. On the other hand, the deceptively rea-
onable choice

JR��12� = I0 rect��12

2�
� �13�

s actually senseless, because some of the eigenvalues
ould necessarily be negative. In fact, in this case, the
ourier coefficients � turn out to be proportional to
n
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inc�n� /�� and it is not possible to choose a value of ����
uch that all of them are positive.

. EXAMPLES
he simplest example is that of a delta-correlated source.
n propagation this gives rise to J0-correlated partially

oherent fields [3], which have been studied in several pa-
ers [4,13–22]. Although a deltalike correlation function
oes not belong to the class of Hilbert–Schmidt kernels, a
odal expansion can be found [23]. Here, we simply note

hat in such limiting case all the eigenvalues become
qual to one another, as can be seen from Eq. (10) by for-
ally replacing Ja by a delta function. Therefore, there is

nly one eigenvalue with infinite degeneracy.
As a second example we assume that in the interval

−� ,��, Ja is given by

JR��12� = I0 rect��12

2�
� �

m=−





tri���12 − 2�m�/��, �14�

here 0��2� and I0 is a positive constant. In words,
he periodic function Ja is constituted by a series of isos-
eles triangles centered at 0, ±2� , ±4� , . . . and having ba-
is length 2�. The triangles do not overlap if ���. On in-
reasing � beyond � the triangles overlap more and more,
ntil for �=2� the function Ja becomes flat and the coher-
nt limit is reached (see Fig. 1). On the other hand, the
ncoherent limit is approached for ��2�.

The eigenvalues 2��n can be evaluated by inserting Eq.
14) into Eq. (10); they turn out to be given by

2��0 = I0�, �15�

2��n =
4I0

n2�
sin2�n�

2 � �n � 0�. �16�

et us first consider the limiting coherent case �=2�. As
xpected, all the eigenvalues vanish except that of index
ero. On decreasing �, more and more eigenvalues become
ignificant. Eventually, they tend to coalesce into a single,
egenerate eigenvalue when � tends to zero (although all
f them tend to zero).

For another simple example, we suppose Ja to have the
orm

Fig. 1. Plot of Eq. (14) for different values of �.
Ja��12� = I0

�1 − q�2

1 + q2 − 2q cos �12
, �17�

here 0q1. This is the well-known Airy function [9].
he modal expansion is found at once because the Fourier
eries

1 − q2

1 + q2 − 2q cos �12
= �

n=−





q�n� exp�in�12� �18�

s known to hold, so that

2��n = I0

1 − q

1 + q
q�n�. �19�

ccordingly, the eigenvalues decrease in a geometric way
s functions of the modulus of their index. For each of
hem there is a twofold degeneracy, except for n=0.

In the previous examples, there is an infinite number of
odes (except in the limiting coherent cases, when �
2� or q→0). Of course, this is not a necessary feature of

he modal expansions. Consider the case in which the mu-
ual intensity Ja is given by

Ja��12� = I0 dirN��12�. �20�

hanks to the equality

dirN��12� =
1

2N + 1 �
n=−N

N

exp�in�12�, �21�

e see that there is only one eigenvalue with degeneracy
N+1.
Similarly, letting

Ja��12� = I0 dirN
2 ��12� �22�

nd recalling the equality

dirN
2 ��12� =

1

�2N + 1�2 �
n=−2N

2N

�2N + 1 − �n��exp�in�12�,

�23�

e find a set of eigenvalues that decrease linearly with
he modulus of their index and are endowed with twofold
egeneracy (except the highest one).
It is worthwhile to note that in all our examples the
utual intensity can be thought of as the superposition of

qually spaced replicas of a single function having a pos-
ibly infinite support. Indeed, the Airy function is a super-
osition of Lorentzian curves, the dirN function is a super-
osition of sinc curves, and the dirN

2 of sinc2 curves. All
his stems from the celebrated Poisson’s formula [24],
hich establishes a simple relation between a single func-

ion, say f�x�, and an infinite set of replicas of f�x� spaced
t a distance X from one another. Such formula reads

�
n=−





f�x + nX� = �
n=−





f̃� n

X�exp�2�inx/X�. �24�

ssentially, Poisson’s formula states that if we sample the
T of a function, then the inverse FT of the set of
amples, taken as weighted delta functions, is the super-
osition of equally spaced replicas of the original function.
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Now, among all possible functions, few have had the
ame importance in coherence theory as the Gaussian.
herefore, it is interesting to investigate a periodic mu-
ual intensity made of a superposition of Gaussian curves.
eplacing x by �12 and letting X=2� in Eq. (24) we can
rite

��

� �
n=−





exp�− ���12 + 2�n�2� = �
n=−





exp�−
n2

4�
+ in�12� ,

�25�

here � is a positive constant. The right-hand side is
othing but one of the �-functions of Jacobi. More pre-
isely, a superposition of Gaussian curves leads to a mu-
ual intensity of the form

Ja��12� = I0�3��12

2
,exp�−

1

4�
�� , �26�

here the �3�x ,q� function is defined through the equa-
ion (24)

�3�x,q� = �
n=−





qn2
exp�2inx�, �27�

here 0q1. Clearly, in this case the eigenvalues are
roportional to qn2

. As far as we know, this is one of the
ew examples in which this venerable function occurs in
ptics.

As a last example, we take a mutual intensity of the
orm

Ja��12� = I0J0�2q sin
�12

2 � , �28�

here Jn stands for the nth Bessel function of the first
ind, and q�0 [25]. As we shall see in Section 5, this case
s tightly connected to the synthesis of shift-invariant an-
ular sources. The coefficients �n are obtained from for-
ula 6.681.6 of [24] and, up to a common proportionality

actor, read as

�n = Jn
2�q�. �29�

ven for this example, use could be made of the Poisson
ormula [Eq. (24)]. In this case, however, the function f���
as not a simple form and should be obtained numeri-
ally.

. PROPAGATION
n this section we will study how the spatial coherence
roperties of the field radiated by annular sources change
pon free propagation. We shall limit ourselves to
araxial approximation.
Let us recall the propagation formula for the mutual in-

ensity from the source plane z=0 to a typical observation
lane z=const. [9]:
J�r1,r2,z� =
1

�2z2 

 J��1,�2,0�

� exp� ik

2z
��r1 − �1�2 − �r2 − �2�2��d2�1d2�2,

�30�

here k=2� /�, � being the mean wavelength. When Eq.
7) is inserted into Eq. (30) the following result is ob-
ained:

J�r1,r2,z� =
Ka2

�2z2 exp� ik

2z
�r1

2 − r2
2�� 

 Ja��1 − �2�

� exp�− ika

z
�r1 cos��1 − �1�

− r2 cos��2 − �2���d�1d�2, �31�

here rj, �j, �j=1,2�, are polar coordinates in the obser-
ation plane. It is seen that, for dimensional consistency,

must have dimensions of squared length. The origin of
his lies in the use of the delta functions in Eq. (7).

As a next step, the Fourier series in Eq. (9) is used.
his gives rise to

J�r1,r2,z� =
Ka2

�2z2 exp� ik

2z
�r1

2 − r2
2�� �

n=−





�n

�
 exp�in�1 −
ikar1

z
cos��1 − �1��d�1

�
 exp�− in�2 +
ikar2

z
cos��2 − �2��d�2.

�32�

ext, we use a change of variables of the form �j=�j+�j
� /2, �j=1,2�, and we recall the integral representation

or the Bessel function Jn�u� of the first kind and order n
24], i.e.,

Jn�u� =
1

2�



0

2�

exp�i�n� − u sin ���d�. �33�

hen, we arrive at

J�r1,r2,z� =
Kk2a2

z2 exp� ik

2z
�r1

2 − r2
2��

� �
n=−





�nJn�kar1

z �Jn�kar2

z �exp�in��1 − �2��.

�34�

he series on the right-hand side represents, within the
araxial approximation, the modal expansion of the
ropagated field. Up to a constant factor, the modes, say

�r ,z�, are given by
n
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�n�r,z� = exp� ik

2z
r2�Jn�kar

z �exp�in��, �35�

hile the eigenvalues are proportional to the �n coeffi-
ients.

In particular, the optical intensity across the observa-
ion plane is

I�r,z� � J�r,r,z� =
Kk2a2

z2 �
n=−





�nJn
2�kar

z � . �36�

herefore, the transverse intensity pattern is shape-
nvariant within the paraxial region [26]. Upon propaga-
ion, it is simply attenuated as 1/z2 and enlarged by a fac-
or proportional to z. It will be noted that in the coherent
imit, in which only the �0 coefficient survives, the optical
ntensity is a J0

2 structure [27], whereas it becomes uni-
orm in the opposite limit, in which the �’s tend to be
qual to one another. This ensues from the well-known
ormula [24]

�
n=−





Jn
2�x� = 1, �37�

or any value of x.
In the general case, the structure of the transverse in-

ensity pattern will be governed by the distribution of the
n coefficients.

. SYNTHESIS
n this section, we discuss two possible experimental pro-
edures for synthesizing scalar, shift-invariant correlation
unctions along the annulus. In the first approach, we
tart from a circularly symmetric, spatially incoherent
lanar source and let the radiation emerging from it im-
inge on a thin annular aperture. By virtue of the van
ittert–Zernike (vCZ for short) theorem [9], the mutual

ntensity between two points across a plane parallel to the
ource depends on their Euclidean distance only [28], so
hat the mutual intensity of the radiation emerging from
he annular mask depends only on the difference of their
ngular coordinates.
In the second technique, a rotating transparency is put

n front of the annular aperture, and the latter is illumi-
ated by a spatially coherent, uniform, and equiphase

ight field, such as a plane wave impinging orthogonally.
rovided that the response times of the instruments used
o detect the radiation emerging from the transparency
re not shorter than the rotation period, the mutual in-
ensity of the field after the transparency turns out to be
xactly of the shift-invariant type discussed here.

. Use of Primary Incoherent Sources
e start by considering a primary incoherent planar

ource with intensity distribution described by the radial
unction IS���, with � being the position vector across the
ource. Suppose an infinitely thin annulus to be placed on
plane at a distance D from the source. On applying the

CZ theorem and taking the radial symmetry of the in-
ensity distribution into account, the correlation function
a��12� of the radiation after the annulus, disregarding
roportionality factors, turns out to be

Ja��12� �

0




IS���J0�2�� sin
�12

2 ��d�, �38�

here �=ka /D. On taking Eqs. (28) and (29) into account,
fter some algebra the �n coefficients are found to be
iven by

�n �

0




IS���Jn
2�����d�. �39�

he latter are strictly positive and, therefore, give rise to
nonnegative definite correlation function. Furthermore,

−n=�n.
There are some cases in which the coefficients in Eq.

39) can be expressed in closed-form terms. For instance,
f the primary incoherent source is itself a thin annulus
ith radius R, its intensity distribution IS��� is propor-

ional to 	��−R�. Therefore, the mutual intensity of the
adiation after the annular mask is, from Eq. (38), propor-
ional to J0�2�R sin��12/2��, and the coefficients turn out
o be

�n = Jn
2��R�. �40�

ere and in the following examples, the coefficients are
ormalized to their sum. Equation (40) exactly corre-
ponds to the example presented at the end of Section 3.

Different primary sources with radial intensity distri-
utions can be obtained by simply superimposing annular
ources with different radii and intensities, according to
q. (38). For instance, if we consider a disk of radius R

ncoherently and uniformly illuminated, then the follow-
ng coefficients are found:

�n = Jn
2��R� − Jn+1��R�Jn−1��R�. �41�

or a Gaussian-shaped primary source having width �I,
e have IS���=exp�−�2 /�I

2� and

�n = exp�−
�2�I

2

2 �In��2�I
2

2 � , �42�

ith In being the modified Bessel function of first kind
nd order n.
Figure 2 shows the behaviors of the �n coefficients ob-

ained from Eq. (40) (squares), Eq. (41) (open circles), and
q. (42) (solid circles) as functions of the index n for �R
��I=10. These plots clearly show that the form of Ja can
trongly affect the behavior of the eigenvalues. The latter
lay a key role in the structure of the propagated field, as
e know from Eq. (34).

. Use of Rotating Transparencies
uppose that a plane wave illuminates orthogonally an
paque mask (M) in which an annular aperture is pierced
see Fig. 3). The emerging radiation then passes through

rotating transparency ���. We assume that the trans-
ission function of the transparency depends on the an-

ular coordinate only and we denote it by ����. Therefore,
he disturbance at a typical point � and time t has the
orm
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V��,t� = Ai�t���� − �t�, �43�

here Ai�t� is the complex amplitude of the illuminating
ave and � is the angular velocity of the rotating trans-
arency. The time dependence of Ai accounts for possible
uctuations in amplitude and phase of the incident plane
ave.
The mutual intensity of the emerging field can be

valuated through a temporal average over one period.
ore precisely, we have

J��1,�2� =
1

T
0

T

V��1,t�V*��2,t�dt

=
1

T
0

T

�Ai�t��2���1 − �t��*��2 − �t�dt

=
Ii

T
0

T

���1 − �t��*��2 − �t�dt, �44�

here T is the rotation period. In the last passage it has
een assumed that the intensity Ii of the plane wave is
early constant over times of the order of the period and
an be drawn out of the integral [29]. A simple change of
ariable shows that this gives rise to the shift-invariant
utual intensity

ig. 2. (Color online) Coefficients obtained from Eq. (40)
squares), Eq. (41) (open circles), and Eq. (42) (solid circles) as
unctions of the index n for �R=��I=10.

ig. 3. (Color online) Rotating transparency coherently illumi-
ated by an annular field distribution.
J��1,�2� = Ja��12� = IiCr��12�, �45�

here C� denotes the autocorrelation of the transmission
unction; that is

Cr��� =
1

2�



0

2�

�*������ + ��d�. �46�

It is apparent that this is a genuine mutual intensity,
hanks to the physical interpretation of the setup. In
athematical terms, the nonnegativity of the kernel

pecified by Eq. (45) is a consequence of its superposition
ature [10,30].
Let us give a simple example by taking

���� = rect��

�
� . �47�

n evaluating C� and using Eq. (45), we find a periodic
unction whose restriction to the interval �−� ,�� coincides
ith that given by Eq. (14).
As we shall see, all the mutual intensities seen in Sec-

ion 3, as well as any other angularly shift-invariant mu-
ual intensity, could be synthesized using the above ap-
roach, by means of suitable transparencies.
Let us consider a periodic function ���� admitting the

ourier expansion

���� = �
m=−





�m exp�im��. �48�

n inserting from Eq. (48) into Eq. (46) we obtain at once

C���� = �
m=−





��m�2 exp�im��. �49�

For synthesizing an arbitrary mutual intensity we
ould proceed as follows. Expand Ja in a Fourier series.
his will furnish the ��m�2. The square roots of these terms
ive a set of Fourier coefficients that specify a transpar-
ncy whose autocorrelation gives the required mutual in-
ensity [31]. Let us apply such a procedure to some of the
xamples presented in Section 3. In the case of the Airy
unction, Eq. (17), we can take as �m just the square roots
f the coefficients �m, with zero phases. This gives, apart
rom proportionality factors, �m= ��q��m�, so that the angu-
ar dependence of the transparency � can be chosen itself
s an Airy function, but with parameter given by �q.
The same arguments hold for the fourth example in

ection 3, namely, the function dirN. In fact, by virtue of
q. (21), the coefficients �m equal 1/ �2N+1� for any �m�
N and vanish otherwise. Therefore, coefficients �m can

lso be chosen as equal to one another for �m��N and
anishing for �m��N, so that the form of the function ����
urns out to be the same as that of its autocorrelation, i.e.,
irN���. Note, instead, that the autocorrelation of dirN

2 is
o longer a dirN

2 function, as can be seen from Eq. (23). In
he case of a mutual intensity proportional to a �3 func-
ion [Eq. (25)], taking the square root of the Fourier coef-
cients corresponds to doubling the pertinent � param-
ter, but the shape of the transmission function keeps the
ame analytical form.
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. CONCLUSIONS
iffraction-free and J0-correlated fields were introduced
ore than twenty years ago. Yet the interest in their

roperties and applications is far from subsiding.
iffraction-free and J0-correlated fields epitomize the

ype of radiation emitted by a thin annular source under
oherent and incoherent illumination, respectively. In the
resent paper, we showed that these fields constitute lim-
ting cases of a more general class of annular sources with
artial correlation. Under the hypothesis of angularly
hift-invariant correlation functions, we have seen that,
or any such source, the modal expansion is easily deter-
ined, thus adding a whole new class to the relatively

mall set of sources for which the modal analysis can be
erformed in closed-form terms. This, in turn, allows us to
tudy in a simple and unified manner the correlation
roperties of the fields propagating away from such
ources. A wise choice of the form of the mutual intensity
long the annulus allows us to favor certain modes with
espect to the others, thus influencing the structure of the
eld propagated away from the source. We have also seen
hat feasible experimental synthesis schemes exist, thus
nabling laboratory checks of theoretical predictions. In
he present paper, we limited ourselves to a scalar treat-
ent. The extension to the electromagnetic case, which
ill be discussed in a subsequent paper, will reveal fur-

her features of partially correlated thin annular sources.
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