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Modal expansion for J0-correlated
electromagnetic sources
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We introduce a class of sources that turn out to be J0 correlated in a scalar description but exhibit varied
correlation properties when examined in electromagnetic terms. We prove that a modal expansion can be
built explicitly for any of these sources and give an example to illustrate the richness of their behavior.
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The so-called J0-correlated Schell-model sources [1]
have played a significant role in the scalar theory of
coherence [2–12]. Basically, a J0-correlated Schell-
model scalar source is described, across its plane, by
a cross-spectral density (CSD) [13], say W�r1 ,r2�, of
the form

W�r1,r2� = ��r1��*�r2�J0���r1 − r2��, �1�

where J0�·� denotes the Bessel function of the first
kind and zero order and � is a parameter having the
dimensions of the inverse of a length. Furthermore,
the squared modulus of the circularly symmetric
function ��r�, which can be synthesized through a
suitable filter, gives the intensity profile across the
source plane. For such sources, it was shown that the
modal expansion [13] can be found for any (well-
behaving) intensity profile [1].

In recent times, there has been growing interest in
the electromagnetic treatment of optical sources,
where coherence and polarization properties are in-
tertwined [14–32]. Obviously, finding the modes of an
electromagnetic source [23] is even more difficult
than in the scalar case, because one passes from one
integral equation to a pair of coupled integral equa-
tions. As far as we know, explicit expressions for the
vectorial modes have been found for only a few cases
[23,24,31].

In this Letter we are interested in sources that
would appear as J0 correlated in a scalar treatment
while exhibiting a richer structure when polarization
is taken into account. We will show that, under suit-
able hypotheses, the vectorial modal expansion can
be found for a large class of cases. For explaining our
procedure, we will first come back to the modal ex-
pansion for the scalar case using an approach slightly
different from the original one [1].

The starting point is that the shift-invariant part
of the correlation function of any Schell-model source
can be synthesized by using a suitable spatially inco-
herent source (primary source)[33]. In particular, for

synthesizing the spectral degree of coherence [13] of
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the J0-correlated source in Eq. (1), a very thin ring-
shaped uniform intensity distribution can be used
[2]. In fact, it is well known that the Fourier trans-
form (FT) of a deltalike uniform annulus is a J0 func-
tion. We now wonder: Can a modal expansion be
found for the CSD along the annulus? This would
solve the problem of the modal expansion across the
synthesized source at its root. In fact, the modes
across the synthesized source could be obtained by
letting those pertain to the annulus propagate.

To examine this question in a slightly more general
form, let us write the CSD across the spatially inco-
herent annulus, say Winc��1 ,�2�, in the form

Winc��1,�2� = Iinc��1����1 − �2�, �2�

where Iinc��� is related to the intensity distribution
on the ring and ��·� denotes the Dirac delta function.
Only the dependence on the angular coordinates is
shown, being understood that the source is an infi-
nitely thin annulus. It should be noted that Eq. (2)
gives a nonnegative definite kernel (and, hence, a
genuine CSD), provided only that Iinc��� is a nonne-
gative function. At the same time, is must be realized
that, owing to the presence of the angular delta func-
tion, Winc does not belong to the class of the Hilbert–
Schmidt kernels on the space ��1 ,�2�� �0,2��
� �0,2��. As a consequence, Mercer’s theorem [13]
cannot be invoked and, in the general case, a modal
expansion for Winc simply does not exist. This can be
seen by inserting Eq. (2) into the Fredholm integral
equation [13]

�
0

2�

Winc��1,�2����2�d�2 = ����1�, �3�

with � being the eigenvalue and ���� the correspond-
ing eigenfunction. Using Eq. (2), we find

Iinc������� = �����. �4�

The only case in which this equation can be satisfied

by a well-behaving eigenfunction (banning deltalike
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structures for �) is when Iinc���=�, i.e., when the in-
tensity distribution is uniform over the ring. In this
case, � behaves as an eigenvalue with infinite degen-
eracy, because any function can be thought of as an
eigenfunction. A Mercerlike expansion can be built by
using a complete set of orthonormal functions. The
most simple choice is to use the basis of harmonic ex-
ponentials on the ring. This leads to the expansion

Winc��1,�2� = � 	
n=−	

+	


n��1�
n
*��2�, �5�

with 
n���=exp�in�� /
2�. The modal expansion of
the CSD at the plane of the synthesized source [see
Eq. (1)] is obtained by Fourier transforming each
mode and by taking into account the action of the fil-
ter. The result [1] corresponds in expressing J0 in Eq.
(1) by means of Graf ’s formula [34].

Let us now pass to electromagnetic sources. In this
case, too, we shall start from a primary ring-shaped
spatially incoherent source. The natural extension of
Eq. (2) is

Ŵinc��1,�2� = Îinc��1����1 − �2�, �6�

where now Ŵinc��1 ,�2� denotes the correlation tensor
[15,32] and Îinc��� is a 2�2 polarization matrix [32],
which specifies the polarization state along the ring.
Let us now recall that the optical intensity is propor-
tional to the trace of Îinc���. Because of our previous
results, whenever such a trace is uniform along the
ring, the source synthesized in the far zone will ap-
pear, in scalar terms, as a J0-correlated source.

According to the modal theory for electromagnetic
sources [23,24], the following coupled Fredholm inte-
gral equations have to be solved:

�
0

2�

Ŵinc��1,�2����2�d�2 = ����1�, �7�

where now ���� represents the Jones vector [35]:

���� = �
x���


y���� , �8�

which specifies the �-dependent polarization state
associated with the mode. By substituting Eq. (6) into
Eq. (7), the Fredholm integral equation leads to the
following linear system:

Îinc������� = �����, �9�

which corresponds to the eigensystem for the matrix
Îinc���.

Because of the properties of the polarization matrix
[32], for any fixed value of �, the above system admits
two nonnegative eigenvalues, say �i��� �i=1,2�, with
the corresponding (normalized) Jones eigenvectors
�i���, which satisfy the orthonormality condition

�i
†����j��� = �i,j. �10�

Accordingly, the polarization states associated with

the two eigenvectors are mutually orthogonal. Fur-
thermore, on denoting by T��� the trace of the matrix
Îinc���, which is proportional to the total intensity at
a typical point on the ring, and by P��� the degree of
polarization [32], it is easily seen that �1,2���=T���
��1±P���� /2.

As in the scalar case, the kernel defined via Eq. (6)
does not admit, in general, a Mercerlike modal ex-
pansion. There is, however, a significant exception.
This is when the two eigenvalues �i turn out to be in-
dependent of the angular variable �. This happens if
both T and P are, in turn, independent of �. From
now on, we will assume this to be the case. Note that,
even though P has the same value at any point of the
ring, the polarization state may change at will from
one point to another.

Under our hypotheses, the 2�2 polarization ma-
trix Îinc can be decomposed as

Îinc��� = 	
i=1,2

�i�i����i
†���, �11�

which, once substituted into Eq. (6), leads to the fol-
lowing expansion of Ŵinc��1 ,�2�:

Ŵinc��1,�2� = 	
i=1,2

�i 	
n=−	

+	

�i,n��1��i,n
† ��2�, �12�

where

�i,n��� =
1


2�
�i���exp�in�� �13�

are mutually orthonormal vector functions. Then, Eq.
(12) can be clearly interpreted as a Mercerlike expan-
sion of the correlation matrix of the incoherent annu-
lus; the eigenvalues of the latter ��i� just coincide
with those ��i� of the polarization matrix Îinc, and the
vector modes are given by Eq. (13).

As an example of application, consider the follow-
ing correlation matrix on the circle:

Ŵinc��1,�2� = � 1 + cos2 �1 sin �1 cos �1

sin �1 cos �1 1 + sin2 �1
����1 − �2�,

�14�

where an inessential proportionality factor has been
omitted. According to a well-known decomposition
[35], the above polarization matrix can be thought of
as arising from the superposition of a perfectly unpo-
larized field and of a perfectly polarized one, endowed
with radial polarization. It is at once seen that, at
any angle �, we have T=3 and Det�Îinc����=2, so that

P=1/3.



August 15, 2008 / Vol. 33, No. 16 / OPTICS LETTERS 1859
On applying the paraxial van Cittert–Zernike theo-
rem for electromagnetic sources [17,18], it is found
that the elements of the correlation matrix across the

ˆ
synthesized source �W� are

Wxx�r1,r2� = ��r1��*�r2��J0��r12� − 1

3J2��r12�cos�2�12��
Wxy�r1,r2� = 1

3��r1��*�r2�J2��r12�sin�2�12�

Wyy�r1,r2� = ��r1��*�r2��J0��r12� + 1
3J2��r12�cos�2�12��

� , �15�
where r12=r1−r2, �12 is the polar angle of r12, and
J2�·� denotes the Bessel function of the first kind and
order 2. Predictions of the electromagnetic example
could be tested by using suitable anisotropic ele-
ments. For instance, a linear polarizer aligned along
any axis across the source plane would reveal that
the correlation between the corresponding compo-
nents of the electric field at two points does not
present the same behavior as that pertinent to a sca-
lar J0-correlated source. In particular, such correla-
tion does not depend only on the distance between
the two points but even on the inclination of the join-
ing line. It is also worth noting that, on letting r1
=r2, at a typical point of the source there is no corre-
lation between the x and the y components of the
electric field, whereas some correlation may exist
when r1�r2.

As far as the modal structure of the source in Eq.
(15) is concerned, it is easily found that the two ei-
genvalues turn out to be �1=2 and �2=1 while the
corresponding Jones eigenvectors are obtained by
Fourier transforming Eq. (13) with �1 and �2 lin-
early polarized along the radial and the azimuthal di-
rections, respectively. It is interesting to note that
the modes across the plane of the synthesized source
can be expressed in terms of a linear combination of
radial and azimuthal vector modes of the type intro-
duced some years ago by Greene and Hall [36] in the
study of Bessel–Gauss beam solutions of the vector
wave equation.
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