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The set of functions that appear in the correlation matrix of an electromagnetic source must satisfy the con-
straint of nonnegative definiteness. Here we derive a necessary and sufficient condition for nonnegativeness for
the class of electromagnetic Schell-model sources. This result also suggests a possible synthesis procedure for
this type of source. As an illustration, two specific examples of electromagnetic Schell-model sources are
discussed. © 2008 Optical Society of America
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. INTRODUCTION
patial correlation functions must satisfy the well known
onnegative definiteness constraint [1,2]. Obviously, vio-

ation of this constraint entails that the corresponding
ource simply cannot exist. A condition ensuring that the
efiniteness constraint is satisfied will be loosely referred
o as a realizability condition. In this paper, we shall con-
ider realizability conditions for Schell-model (SM, for
hort) sources.

SM sources were introduced more than 40 years ago to
escribe scalar partially coherent light sources having
hift-invariant degree of spatial coherence [3]. Since then,
hey have played a role of utmost importance in the con-
ext of the theory of coherence [1,4], because the wave
eld radiated by several natural sources turns out to be of
he SM type. The most celebrated example is of course
iven by the light radiated by stars, which, when ob-
erved from the Earth, presents a shift-invariant degree
f spatial coherence, well described by a besinc function
the definition of besinc will be recalled shortly). This, in
urn, allowed the angular diameters of very distant astro-
omic objects to be measured via the Michelson stellar in-
erferometer [5] and synthetic-aperture techniques to be
eveloped [6,7]. A significant feature of scalar SM sources
s that they can always be produced starting from a spa-
ially incoherent light source and applying the van
ittert–Zernike theorem [5] for the propagated field

8–17]. The reason for this stems from the fact that the
ecessary and sufficient condition for a scalar SM source
o be physically realizabile is that the Fourier transform
f its degree of coherence be a nonnegative function [11].

In the present paper, we address the realizability prob-
em for SM sources in the more general framework of elec-
romagnetic stochastic wave fields. Sources of this kind
ere considered not long ago [18–21], but finding realiz-
bility conditions for them turned out to be more demand-
1084-7529/08/051016-6/$15.00 © 2
ng than for scalar sources, as witnessed, for instance, by
19,21]. In particular, we shall derive the necessary and
ufficient condition that must be fulfilled by the shift-
nvariant parts of the correlation matrix characterizing a
ypical electromagnetic Schell-model source. We will show
hat such a condition has a simple physical interpretation
n terms of the generalized van Cittert–Zernike theorem
18], which, in turn, suggests a possible procedure for syn-
hesizing electromagnetic SM sources. As an example, we
hall apply the necessary and sufficient condition to the
articular case of an electromagnetic Gaussian Schell-
odel (EGSM) source and make a comparison with the

esults recently found by Roychowdhury and Korotkova
n [21]. A second example, mainly involved in the study of
he light emitted by disk-shaped sources, such as stars,
ill also be considered.

. PRELIMINARIES
. Scalar Schell-Model Sources
he spatial coherence features of partially coherent scalar
ources are described in terms of the mutual intensity, in
he space–time domain, or of the cross-spectral density, in
he space–frequency domain [1,4,5,22]. In the present pa-
er, we shall adopt the first choice. On the other hand, the
xtension to the space–frequency approach is straightfor-
ard.
A partially coherent scalar source is said to be of the

M type [1,4] if its mutual intensity at two typical points
1 and �2 can be written in the following form:

J��1,�2� = s��1�s��2�j��1 − �2�, �1�

here s is the square root of the optical intensity, namely,
008 Optical Society of America
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s��� = �J��,��, �2�

hile j�·� denotes the (shift-invariant) degree of spatial co-
erence.
It is well known that, in general, the form of j cannot be

hosen at will, but rather it is subjected to restrictions
imed at ensuring that the corresponding J��1 ,�2� is a
enuine mutual intensity. As a matter of fact, the (obvi-
us) condition �j � �1 is not enough to ensure that J be a
onnegative definite kernel, a mandatory requirement for
n actual spatial correlation function [5]. In the scalar
ase, a necessary and sufficient condition warranting the
bove nonnegativeness feature is provided by Bochner’s
heorem [23], according to which the function J specifies a
onnegative definite kernel if and only if the Fourier
ransform of its shift-invariant part is a nonnegative
unction [11].

. Electromagnetic Schell-Model Sources
quasi-monochromatic electromagnetic source will be de-

cribed by means of the beam-coherence–polarization
BCP) matrix [24,25], whose elements—say,
����1 ,�2�—are given by

J����1,�2� = �E
�
*��1,t�E���2,t��; ��,� = x,y�, �3�

here E��� , t� ��=x ,y� is the analytic signal associated
ith the electric field component along the � axis of a
uasi-monochromatic wave at position � and time t. The
ngular brackets denote time averages. An electromag-
etic source will be called of the SM type if the elements
f the corresponding BCP matrix have the following form
4]:

J����1,�2� = s���1�s���2�j����1 − �2�, ��,� = x,y�, �4�

ith

s���� = �J����,��; �� = x,y�. �5�

f course, since the diagonal elements of the BCP matrix
epresent scalar correlation functions, s� ��=x ,y� is a
onnegative function. In addition, since both jxx and jyy
ossess the same properties as a scalar degree of spatial
oherence, their Fourier transforms have to be nonnega-
ive.

It should be noted how the choice of the functional form
f the off-diagonal elements of the BCP matrix suffers
rom constraints additional to those of the nonnegative
efiniteness of the whole matrix. This clearly appears in
q. (4). In fact, while the choice of the shift-varying part
f the diagonal matrix elements, represented by the non-
egative functions s�, is arbitrary, it necessarily fixes the

unctional form of the shift-varying part of the off-
iagonal elements J�� as well. Due to such constraint, the
hift-invariant character of all the normalized degrees of
orrelation j�� is ensured, so that Eq. (4) provides the
atural extension of the Schell model to the vectorial
ealm.
. REALIZABILITY CONDITION
he present section is aimed at deriving a necessary and
ufficient condition for nonnegativeness of the BCP ma-
rix of any electromagnetic SM source.

It is easily seen that, for sources of the type specified by
q. (4), the nonnegativeness condition [1] can be ex-
ressed by requiring that the quadratic form

Q = �
�=x,y

�
�=x,y

�� j����1,�2�f
�
*��1�f���2�d2�1d2�2, �6�

here fx and fy are arbitrary (well-behaving) functions, be
onnegative for any choice of fx and fy. Note that only the
ormalized parts, j��, of the BCP matrix elements are in-
olved in this condition. On expressing the functions j��

hrough their Fourier transform (to be denoted by a tilde),
iz.,

j����1 − �2� =� j̃�����exp	2�i� · ��1 − �2�
d2�, �7�

nd on inserting such representation into Eq. (6), we ob-
ain

Q = �
�=x,y

�
�=x,y

� f̃
�
*���f̃����j̃�����d2�. �8�

urthermore, on taking into account the relation

j̃yx��� = j̃xy
* ���, �9�

hich follows from the fact that jxy��1−�2�= jyx
* ��2−�1�

25], Eq. (8) can be written as

Q =� 	�f̃x����2j̃xx��� + �f̃y����2j̃yy���

+ 2 Re�f̃x
*���f̃y���j̃xy����
d2�, �10�

here, as already noted, j̃xx and j̃yy are nonnegative func-
ions.

It is not difficult to see that, in order for Q to be non-
egative, it is sufficient that the following condition be
et:

�j̃xy���� � �j̃xx���j̃yy���, �11�

or any �.
To prove that Eq. (11) is also necessary, we shall argue

y contradiction. Suppose that (i) Q is nonnegative for
ny choice of f̃x and f̃y; (ii) the condition in Eq. (11) is not
atisfied for � belonging to a certain domain D. From a
eneral result of matrix analysis [26], it follows that the
ntegrand in Eq. (10) is nonnegative at the point � if and
nly if the inequality in Eq. (11) is fulfilled at �. Because
f assumption (ii), it will always be possible, at any point
n D, to choose f̃x��� and f̃y��� in such a way that the cor-
esponding value of the integrand is negative. Conse-
uently, on letting f̃x���and f̃y��� to be identically vanish-
ng for ��D, we would obtain Q�0, and this contradicts
ypothesis (i). Accordingly, we conclude that Eq. (11) is a
ecessary and sufficient condition to warrant the nonne-
ativeness of Q.
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Equation (11) is the main result of this paper. Note that
t can be seen as the generalization of Bochner’s theorem
or the case of tensorial operators.

An interesting consequence of Eq. (11) is that the value
f the correlation between the orthogonal components of
he field at a typical point across a SM source is not lim-
ted by the Schwarz inequality only. This can be seen on
etting

B�� = j���0�, �12�

ith Bxx=Byy=1 and Bxy �=Byx
* � a complex number repre-

enting the normalized correlation between the x and the
component of the field at the same point. From the

chwarz inequality it directly follows that [4]

�Bxy� � �BxxByy = 1, �13�

ut a possibly stronger limitation comes from Eq. (11). In
act, on taking into account that

Bxy = jxy�0� =� j̃xy���d2�, �14�

rom Eq. (11) we have at once

�Bxy� = 
� j̃xy���d2�
 �� �j̃xy����d2� �� �j̃xx���j̃yy���d2�.

�15�

his constraint for the correlation matrix is generally
ore tightening than the Schwarz inequality. In order to

ee this, let us take into account the following inequality:

�j̃xx���j̃yy��� �
j̃xx��� + j̃yy���

2
, �16�

here the equality sign holds if and only if j̃xx���= j̃yy���.
rom Eqs. (15) and (16) we then have

�Bxy� �� �j̃xx���j̃yy���d2�

�� j̃xx��� + j̃yy���

2
d2� =

Bxx + Byy

2
= 1. �17�

herefore, unless j̃xx��� is identically equal to j̃yy���, the
pper bound in Eq. (15) is strictly smaller than one.
We can look at such a bound from a different point of

iew by taking the square of both members of Eq. (11) and
ntegrating them on the whole � plane, thus obtaining

� �j̃xy����2d2� �� j̃xx���j̃yy���d2�. �18�

ext, we come back to the � plane, where, thanks to the
arseval theorem, Eq. (18) reads

� �jxy����2d2� �� jxx
* ���jyy���d2�. �19�

inally, on applying the Schwarz inequality to the right-
and side of Eq. (19), the following equation is derived:
� �jxy����2d2� ��� �jxx����2d2�� �jyy����2d2�. �20�

Equation (20) is interesting on its own, since it gives a
ossible interpretation of the inequality in Eq. (11). Par-
lleling a definition of coherence time proposed long ago
y Mandel [27], the integral ��j������2d2� can be seen as
n estimate of the “correlation area” across the source
lane, that is, the area within which the correlation be-
ween the � and � components of the electric field is ap-
reciable. Within such intepretation scheme, Eq. (20)
tates that the cross-polarization correlation area is up-
er bounded by the geometric mean of the co-polarization
orrelation areas.

As a final remark, we note that our present results can
e slightly generalized by considering sources whose BCP
atrix elements have the form

J����1,�2� = s���1�s���2�exp�i	����2� − ����1�
�

	j����1 − �2�, ��,� = x,y�, �21�

here �� is an arbitrary phase distribution. Structures of
his type appear, for example, in the BCP matrix elements
ertaining to the field propagated a distance z away from
he plane of a spatially incoherent source, in which case
he phase distribution �� has the expression [18]

����� =
�


z
�2, �22�

here 
 denotes the mean wavelength of the field. It is
asily verified that our derivation of the necessary and
ufficient realizability condition could be repeated giving
o the BCP matrix elements the form in Eq. (21) and that
he final result would still be expressed by Eq. (11).

. EXAMPLES
. Electromagnetic Gaussian Schell-Model Sources
lectromagnetic Gaussian Schell-model (EGSM) sources
ave been introduced as the natural extension to the vec-
or case of scalar Gaussian Schell-model sources
19,28,29]. They have attracted the attention of several
esearchers, from both the theoretical and experimental
tandpoints, as can be seen from the recent literature
30–43]. A general EGSM source is characterized by a
CP matrix of the form given in Eq. (4), with [4]

s���� = A� exp�−
�2

4��
2� ,

j����� = B�� exp�−
�2

2���
2 � , �23�

here ��, ��� �=����, and A� �� ,�=x ,y� are real and posi-
ive parameters. The number of independent real param-
ters is nine. Using Eq. (11), it is not difficult to show that
he condition
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�Bxy��xy
2 exp�− 2�2�xy

2 �2� � �xx�yy exp	− �2��xx
2 + �yy

2 ��2


�24�

as to be met for any �. Since the functions on the left-
and side and right-hand side of Eq. (24) decrease mono-
onically with �, on considering the inequality for the lim-
ting cases �=0 and �→
, the following “fork” inequality
s found:

��xx
2 + �yy

2

2
� �xy ���xx�yy

�Bxy�
. �25�

It is worthwhile to compare such an inequality with
hat obtained in [21], which reads

max��xx,�yy� � �xy �
min��xx,�yy�

��Bxy�
. �26�

n particular, since

��xx
2 + �yy

2

2
� max��xx,�yy�, ��xx�yy � min��xx,�yy�,

�27�

e see that the interval specified by Eq. (26) fits into the,
ossibly larger, interval required by Eq. (25).
Furthermore, it should be noted that, in order for the

nequality in Eq. (25) to be satisfied, it must be

��xx
2 + �yy

2

2
���xx�yy

�Bxy�
, �28�

nd therefore the modulus of Bxy has to fulfill the follow-
ng condition:

�Bxy� �
2

�xx/�yy + �yy/�xx
. �29�

quation (29) gives none other than the upper bound de-
ived in Section 3, as can be verified by using Eq. (15). As
ar as we know, such limitation on the value of �Bxy� has
ot been noted before.

. Electromagnetic Besinc Schell-Model Sources
nother model used to characterize a wide class of
ources, within the scalar framework, is based on the use
f a shift-invariant degree of spatial coherence described
y a so-called “besinc” function. In the present section we
ropose an extension of such a model to the case of elec-
romagnetic sources. Consider a BCP matrix, whose ele-
ents have the form of Eq. (3) with

j����� = B�� besinc��/����, �30�

here ��� (=��� with � ,�=x ,y) are real and positive pa-
ameters, and the besinc function is defined as

besinc�t� =
2J1��t�

�t
, �31�

1�t� being the Bessel function of the first kind and order
ne [44]. On substituting from Eq. (30) into Eq. (11), and
n taking the following Fourier transform into account,
besinc� �

���
�FT�

4���
2

�
circ�2�����, �32�

ith circ�u� being the characteristic function of the circle
�1, the realizability condition is expressed by the in-
quality

�xx�yy circ�2�M�� � �Bxy��xy
2 circ�2�xy��, �33�

here �M=max��xx ,�yy�. Equation (33) must be valid for
ny value of �. In particular, on taking the spatial extents
f the circ functions into account and considering the
alue �=0, the following inequality is easily derived:

max��xx,�yy� � �xy ���xx�yy

�Bxy�
. �34�

Furthermore, using the same arguments leading to Eq.
29), one can show that

�Bxy� � min� �xx

�yy
,
�yy

�xx
� . �35�

. CONNECTION WITH THE VAN
ITTERT–ZERNIKE THEOREM
he analysis presented in the previous sections finds an

ntuitive explanation in terms of the extension of the van
ittert–Zernike theorem to electromagnetic sources [18].
ccording to the latter theorem, the shift-invariant parts
f the BCP matrix can be synthesized starting from a spa-
ially incoherent source, whose polarization characteris-
ics are in general point dependent, and considering the
ropagated radiation. The polarization matrix [4] across
he incoherent source is specified by j̃��. Within such an
nterpretation scheme, we see that Eq. (11) simply im-
oses that, at any point of the incoherent source, the po-
arization matrix be nonnegative definite, a well-known
equirement for this type of matrix. Once the shift-
nvariant parts of the BCP matrix have been synthesized,
he factors remaining in Eq. (21) can be introduced by
eans of suitable complex filters.
The problem of how, in practice, a spatially incoherent

ource, having a prescribed point-dependent polarization
atrix, can be realized still represents, in the general

ase, an open issue, as witnessed by the attempts pro-
osed in the past for the particular case of the EGSM
ources [20,45]. In other cases, however, the above inter-
retation leads to simple synthesis schemes. As an ex-
mple, we consider an electromagnetic source of the be-
inc type (see Subsection 4.B), with �xx=�yy. Equation (34)
ow gives

�xx � �xy �
�xx

��Bxy�
, �36�

here, from Eq. (35), �Bxy � �1. Let us further choose �xy
qual to its upper bound. Taking Eqs. (30) and (32) into
ccount, the polarization matrix of the incoherent source
s easily seen to be proportional to
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�circ�2�xx�� circ�2�xy��

circ�2�xy�� circ�2�xx��� , �37�

here the spatial frequency is proportional, through a
uitable factor, to the coordinate across the source plane.

To synthesize the incoherent source specified by Eq.
37), we first note that, since �xx��xy, for ��1/ �2�xy� the
tate of polarization is linear at � /4. Conversely, for
/ �2�xy����1/ �2�xx� the field is completely unpolarized.
n other words, the incoherent source is constituted by a
isk radiating linearly polarized light, surrounded by an
npolarized annular region with the same intensity.

. CONCLUSIONS
evising genuine spatial correlation matrices for general
lectromagnetic sources is still an open problem. Here, we
olved such a problem for the whole class of SM sources
y deriving a necessary and sufficient condition for satis-
ying the nonnegative definiteness constraint. We also
howed that any electromagnetic SM source can in prin-
iple be synthesized starting from a suitably polarized
patially incoherent source. These results should be use-
ul for both modeling and synthesizing electromagnetic
ources.
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