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Abstract
Vector modes and eigenvalues are evaluated for a partially coherent source
when only a pair of points is of interest, as in the case of the radiation
emerging from the pinholes of a Young interferometer fed by an
electromagnetic beam. Analytical results are presented, paying particular
attention to those cases when the fields at the two points cannot be
distinguished from one another on the basis of their second-order correlation
properties. It is shown that the superposition scheme provided by the
vectorial modal theory of coherence allows a simple interpretation of the
interference pattern and an intuitive understanding of its
coherence–polarization features to be given. Examples are given for the case
of electromagnetic Gaussian Schell-model sources.

Keywords: partially coherent electromagnetic sources, modal theory of
coherence, Young interferometer

1. Introduction

In the scalar domain, Wolf’s modal theory of coherence [1]
has proved to represent a fundamental tool in studying and
understanding the properties of partially coherent light sources.
According to it, any partially coherent light source can be
thought of as the incoherent superposition of a discrete number
of perfectly coherent sources (the modes), each of them
characterized by a specific value of the power it radiates.
The analytical form of the modes and the values of the
corresponding powers are obtained by finding eigenfunction
and eigenvalues, respectively, of an integral operator whose
kernel is the cross-spectral density (CSD) of the source.
Thinking of the source as arising from the superposition of
perfectly coherent sources has unquestionable advantages, for
instance, whenever the propagation features of the radiated
beam have to be investigated, or when a specific light source
has to be synthesized [2]. On the other hand, analytical closed
forms for the modes are found only in very particular, although
significant, cases [3–9] and often approximate numerical
techniques are to be adopted.

In recent years, a great deal of research has been devoted
to the study of the so-called electromagnetic (or vector)
partially coherent sources, for which the vectorial character
of the electromagnetic field cannot be ignored. This is
the case, for instance, of sources that are both partially
coherent and partially polarized, or that present non-uniform
polarization across the source plane. In such cases, in principle,
the correlation functions among all the components of the
electromagnetic field have to be considered [10] but, within
the validity of the paraxial approximation, only the correlations
between the two transverse components of the field (e.g. the
electric one) are sufficient.

James [11] was the first who used a correlation tensor
within the paraxial approximation for successfully predicting
changes of the polarization degree on free-space propagation
induced by partial correlation between the x and y components
of the electric field. A few years later, a 2 × 2 matrix was
introduced [12, 13], namely, the beam coherence–polarization
(BCP for short) matrix, as the basic tool for the study of
electromagnetic sources in the paraxial domain. In particular,
in [13] it was also shown that generalized interference laws
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can be established for the elements of the correlation matrix
at the output plane of a Young interferometer, giving rise
to an oscillatory behaviour of such elements. The original
analysis about the BCP matrix was carried out in the space–
time domain, and later it was also extended to the space–
frequency domain by Wolf [14].

A further step in advancing toward a more complete theory
was established, not long ago, through an extension in the
temporal domain of Wolf’s modal theory of coherence to the
case of electromagnetic sources [15]. In analogy to the scalar
case, the 2×2 correlation tensor plays the role of the kernel of a
non-negative definite Hilbert–Schmidt integral operator, which
now acts on a pair of functions, i.e. the x and y components
of the electric field. Then, on invoking the spectral theorem,
the modal decomposition follows. Modes and eigenvalues
keep the same meaning as for the scalar case, but now a
system of coupled integral equations must be solved in order
for them to be found. In particular, the modes represent
perfectly correlated vector field distributions, characterized by
their own two-component Jones vectors [15]. Shortly after its
introduction in the temporal domain, vectorial modal theory
was also formulated in the spectral domain [16].

It should be stressed that the analytical problem of finding
eigenvalues and eigenvectors of an assigned correlation tensor
is much more difficult than for the scalar case, except of
course when the polarization is uniform across the source [16],
and closed-form expressions for modes and eigenvalues have
been found only for a very few cases [15]. Nonetheless,
if a pair of source points at a time is of interest, finding
the modal expansion becomes quite elementary. The most
important example of this situation occurs in the analysis of
Young’s interferometer. In fact, in the ideal case of very small
pinholes [10], we can say that only two points of the field are
selected. For want of a better name, we shall refer to such a
situation as the case of two-point sources.

Due to the current interest for the Young interference
experiment beyond the scalar approximation [17–24], it
appears that finding the modal decomposition of the radiation
emerging from the pinholes represents in itself a task of
considerable conceptual importance. Moreover, the knowledge
of the modal expansion can be of help in understanding the
structure of the interference pattern and in elucidating the
relationship between the coherence–polarization properties of
the light at the pinholes as well as those in the fringe plane.

In [24] it was shown that the problem of the vector
mode determination of a two-point source reduces to solving
a secular problem for a 4×4 matrix, whose elements represent
the correlations between the components of the field at the
two points. The aim of the present paper is to apply the
general results obtained in [24] to a class of two-point sources,
i.e. those sources for which the two considered points are
completely indistinguishable from one another on the basis
of second-order correlation measurements performed on any
pair of field components. This means, in particular, that all
the coherence–polarization properties of the source remain the
same if the fields at the two points are interchanged. We shall
refer to such sources as symmetric two-point sources. This
concept deserves some clarification.

Suppose we consider the electromagnetic field at two fixed
points in space and we have to distinguish one point from the

other. Of course, first we may detect some local quantities
pertinent to the two fields, such as total intensity, polarization
degree, polarization state of the polarized component, and so
on. In other terms, we may measure the elements of the
polarization matrices [2] of the field at the two points. But,
even if the two matrices turn out to be identical, we can figure
out some further way for distinguishing the two points. In
fact, we may measure the correlations existing between each
of the transverse components of the field at one point and
those of the other one. It may happen, for instance, that the
x component of the field at point 1 is perfectly correlated with
the y component of the field at point 2, while the y component
of the field at point 1 and the x component of the field at point
2 are mutually completely uncorrelated. So, measuring the
correlation functions between orthogonal field components of
the field at the two points provides a way to discriminate one
point from the other. In contrast, the two points are completely
indistinguishable (in the sense of the second-order coherence
theory) if all the correlation functions between any pairs of
field components take the same value after interchanging the
two points.

It will be shown that simple analytical expressions are
obtained for eigenvalues and modes of a symmetric two-
point source and that several features of the electromagnetic
field at the output plane of the interferometer (such as its
intensity distribution, degree of polarization and behaviour
of the Stokes parameters) can be easily interpreted in terms
of superpositions of mutually uncorrelated perfectly polarized
light beams. Nonetheless, as we shall see, significant two-point
electromagnetic sources belong to this class.

As an important example of a symmetric two-point
source we will consider a source obtained by letting an
electromagnetic Gaussian Schell-model (EGSM) beam to
feed a Young interferometer. EGSM beams, sometimes
referred to as partially polarized Gaussian Schell-model
(PGSM) beams, have been introduced as the natural
extension of the scalar Gaussian Schell-model beams [2]
to the vector case [11, 25, 26]. Since their introduction,
EGSM beams have proved to represent a powerful tool
for modelling partially coherent electromagnetic beams and
studying their propagation [27–32]. They have also been
employed to investigate the coherence and polarization
properties of Young’s interference pattern formed by stochastic
electromagnetic beams [17, 20, 19, 23].

The paper is organized as follows. In section 2 the
definition of the BCP matrix is recalled, together with its
vector mode decomposition and the application to a two-point
source. The case of a symmetric two-point source is studied in
section 3 while examples are worked out in section 4.

2. Preliminaries

2.1. The BCP matrix and its vector mode decomposition

Within the framework of the paraxial approximation, one
can account for the complete set of space–time correlation
functions at two typical points r1 and r2 by using the BCP
matrix [13], which is defined as the correlation matrix of
the Jones vectors of the field at the points r1 and r2. More
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precisely, if one introduces the Jones vector of the electric field
at the coordinate r as the column vector

E(r, t) =
[

Ex (r, t)
Ey(r, t)

]
, (1)

the corresponding BCP matrix is defined as

Ĵ (r1, r2) = 〈E(r1, t)E†(r2, t)〉
=
[

Jxx(r1, r2) Jx y(r1, r2)

Jyx(r1, r2) Jyy(r1, r2)

]
, (2)

where the dagger denotes Hermitian conjugation and the
angle brackets time average. Therefore, the elements of the
BCP matrix give the cross-correlation between the α and β

components (α, β = x, y) of the electric field at points r1 and
r2 for zero time delay. In the case of polychromatic fields,
use should be made of the CSD tensor defined in the spectral
domain [14], but the two definitions are equivalent if quasi-
monochromatic sources are considered. Accordingly, we shall
continue using the definition in equation (2), but our results
could be easily transposed into the space–frequency domain.

The local properties of the beam are specified by the BCP
matrix with r1 = r2, which coincides with the polarization (or
coherence) matrix defined in [10]. In fact, the whole set of
the Stokes parameters of the radiation can be evaluated starting
from the values of the polarization matrix as follows [10]:

S0 = Jxx + Jyy; S1 = Jxx − Jyy;
S2 = Jx y + Jyx; S3 = i(Jx y − Jyx),

(3)

where the matrix elements are evaluated with r1 = r2. In
particular, the optical intensity and the degree of polarization
at the coordinate r turn out to be

I (r) = Tr{ Ĵ (r, r)} = S0(r) (4)

and

P(r) =
√

1 − 4 Det{ Ĵ (r, r)}
[Tr{ Ĵ (r, r)}]2

= S−1
0 (r)

√√√√ 3∑
n=0

S2
n(r), (5)

respectively, where Det stands for determinant and Tr for trace.
Following the same path that leads to the definition of

the coherent modes of a scalar cross-spectral density [1],
it is possible to define the vector modes of a BCP matrix.
In particular, it has been shown [15, 16] that, under very
general hypotheses, for any partially coherent vector source the
elements of the BCP matrix can be expanded into a series of
modes, to be found by solving the following pair of coupled
integral equations:

∑
β

∫
Jα,β(r, r′)ϕn,β (r′)d2r ′ = �nϕn,α(r);

(α = x, y; n integer),

(6)

where the integration is performed across the whole transverse
plane.

A more compact form for equation (6) can be given if one
arranges the two components of a mode into a column vector,
i.e.

Φn(r) =
[

ϕn,x (r)
ϕn,y(r)

]
, (7)

so that the above pair of coupled integral equations takes the
form ∫

Ĵ (r, r′)Φn(r′) d2r ′ = �nΦn(r), (8)

which is perfectly analogous to its scalar version [2]. �n and
Φn(r) are the eigenvalues and the eigenfunctions, respectively,
of the BCP matrix and, due to the non-negative character of
Ĵ (r, r′), it turns out that �n � 0 for any n. Furthermore, from
the definition of vector modes, a Mercer expansion can be used
to represent the BCP matrix, namely,

Ĵ (r1, r2) =
∑

n

�nΦn(r1)Φ†
n(r2). (9)

The latter equation can be read as follows. Any partially
polarized, partially coherent source can be thought of as
obtained from the incoherent superposition of a discrete
(possibly infinite) number of perfectly correlated and perfectly
polarized fields, represented by their Jones vectors Φn(r).
The power carried by each mode is proportional to the
corresponding eigenvalue.

2.2. Vector mode decomposition of a two-point source

We are interested here in the case in which the modal theory
of coherence is applied to a pair of fixed points, as for
the radiation emerging from the two pinholes of a Young
interferometer, if the latter are approximated by two pointlike
apertures [24]. Under this approximation, a typical time
fluctuating field component, say Eα(r, t) (α = x, y) emerging
from the mask can be written as a pair of Dirac δ functions
centred at the pinholes’ locations, say pi (i = 1, 2), so that

Eα(r, t) = S
∑
i=1,2

Ei
α(t)δ(r − pi), (10)

where Ei
α(t) = Eα(pi , t) denotes the value of the α component

of the field sampled by the i th pinhole, whereas S is a
proportionality factor that has the dimensions of an area. As is
well known, factors of this type are to be introduced whenever
Dirac functions are used. Similarly, the elements of the BCP
matrix can be expressed as

Jαβ(r1, r2) = S2
∑

i, j=1,2

J i j
αβδ(r1 − pi)δ(r2 − p j ), (11)

where J i j
αβ = Jαβ(pi , p j ) denotes the (generally complex)

element of the BCP matrix relating to the α and β components
of the field at the points pi and p j (α, β = x, y; i, j = 1, 2).

Let us write the Cartesian components of the modes in a
form similar to that in equation (10), namely

ϕn,α(r) = S
∑
i=1,2

ϕi
n,αδ(r − pi), (12)

and insert it into equation (6) together with equation (11). We
then find

S
∑

β=x,y

∑
i, j=1,2

J i j
αβϕ

j
n,β δ(r−pi ) = �n

∑
i=1,2

ϕi
n,αδ(r−pi ), (13)

for α = x, y. This, in turn, requires the following equations to
be satisfied: ∑

β=x,y

∑
j=1,2

J i j
αβϕ

j
n,β = λnϕ

i
n,α, (14)
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where λn = �n/S. Equation (14) represents a 4 × 4 system of
linear homogeneous equations.

To simplify the formalism, it is convenient to introduce
four-component column vectors to be representative of the
electric field vectors at the two points. In particular, we have

E(t) =
[

E1(t)
E2(t)

]
=
⎡
⎢⎣

E (1)
x (t)

E (1)
y (t)

E (2)
x (t)

E (2)
y (t)

⎤
⎥⎦ , (15)

where Ei(t) (i = 1, 2) denotes the Jones vector of the
transverse electromagnetic field at the point located at pi and
E (i)

α (t) (α = x, y) are its Cartesian components. Accordingly,
a 4 × 4 correlation matrix, say ρ̂, can be defined as

ρ̂ = 〈E(t)E†(t)〉 =
[

Ĵ11 Ĵ12

Ĵ †
12 Ĵ22

]
, (16)

where Ĵi j = 〈Ei(t)E
†
j (t)〉 (i, j = 1, 2) is the BCP matrix

evaluated at the points i and j .4

In an analogous way, the modes of the source will be
expressed as four-component vectors. With evident meaning
of the symbols we then have

Ψn =
[
Φn,1

Φn,2

]
=

⎡
⎢⎢⎣

ϕ(1)
n,x

ϕ(1)
n,y

ϕ(2)
n,x

ϕ(2)
n,y

⎤
⎥⎥⎦ , (17)

so that the homogeneous linear system in equation (14) can be
written in matrix form as

ρ̂Ψn = λnΨn, (18)

and it is clear that finding the modal expansion of the source
corresponds to evaluating eigenvalues and eigenvectors of
the complex-valued matrix ρ̂. Since the BCP matrix is
non-negative definite [13], there will be four non-negative
eigenvalues and four mutually orthogonal eigenvectors (each
of them with four elements), for which we can write

Ψ†
nΨm = Φ†

n,1Φm,1 + Φ†
n,2Φm,2 = δn,m , (19)

with δn,m being the Kronecker symbol. Mercer’s expansion of
the matrix ρ̂ is then

ρ̂ =
∑

n

λnΨnΨ†
n. (20)

From a physical point of view, each of the modes
represents a perfectly correlated field distribution at the
pinholes, and any field distribution at the pinholes can be
obtained by superimposing four such modes in an uncorrelated
way. More precisely, one needs at most four modes because, in
certain cases, one or more eigenvalues may vanish.

On the other hand, all the characteristics of the radiation
across the observation plane of the Young interferometer, i.e.
across its output plane, can be deduced from a superposition
scheme involving the vector modes of the BCP matrix at
the pinholes. In particular, since the modes are mutually

4 The 4 × 4 correlation matrix defined in [24], therein denoted by T̂ , is
obtained from ρ̂ after a suitable permutation of its elements.

uncorrelated, the polarization matrix at any point of the
observation plane can be written as the sum of the polarization
matrices produced at that point by each of the modes. The
corresponding Stokes parameters, as well as the polarization
degree at any point of the interference pattern, can be deduced
from its elements using equations (3)–(5).

For a typical 4 × 4 Hermitian matrix, eigenvalues and
eigenvectors can be numerically evaluated even with a hand-
held computer. Accordingly, the modal expansion for a two-
point source is particularly easy. In principle, eigenvalues can
always be evaluated in closed form, by solving the fourth-order
secular equation through Cardano’s formula. While in general
the resulting expressions are rather cumbersome, we shall see
later on that, in a number of cases, the analytical formulae are
simple enough.

Let us come back briefly to the form of the correlation
matrix in equation (16). Its diagonal blocks, Ĵii , coincide
with the polarization matrices at the two points of the Young
interferometer and must necessarily be Hermitian and non-
negative definite [10]. Intensity and degree of polarization at
every point can be evaluated from equations (4) and (5). In
particular, the sum of the intensities of the field at the pinholes
can be evaluated (apart from the proportionality factor S) as the
trace of the matrix ρ̂, which, in turn, equals the sum of the four
eigenvalues:

Itot = Tr{ρ̂} =
∑

n

λn. (21)

On the other hand, the off-diagonal blocks, accounting for
the correlations between the field components at point 1 and
point 2, need not be Hermitian.

The Mercer expansion in equation (20) allows analogous
expansions for the four blocks of the matrix ρ̂ to be written. In
fact, on substituting from equation (17) into equation (20) we
obtain at once the following expression for each of the blocks:

Ĵi j =
∑

n

λnΦn,iΦ
†
n, j . (22)

This, in particular, means that the diagonal elements Ĵii

(i = 1, 2) are given by

Ĵii =
∑

n

λnΦn,iΦ
†
n,i , (23)

which resembles a scalar Mercer’s expansion. One could be
tempted to identify Φn,i with the eigenvectors of the diagonal
blocks. This, of course, cannot be done because the two-
element vectors Φn,i are not, in general, mutually orthogonal.
However, from equation (23) we see at once that the traces of
Ĵii are given by

Ii = Tr{ Ĵii} =
∑

n

λnΦ
†
n,iΦn,i , (24)

where Φ†
n,iΦn,i is nothing but the norm of the subvectors Φn,i .

As far as the antidiagonal block is concerned, from
equation (22) we have

Ĵ12 =
∑

n

λnΦn,1Φ
†
n,2, (25)

and
Tr{ Ĵ12} =

∑
n

λnΦ
†
n,2Φn,1, (26)

where Φ†
n,2Φn,1 is the inner product between the two halves

of Ψn . It should be noted that a similar decomposition has
recently been proposed by Kim and Wolf [33].
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3. Application to symmetric two-point sources

3.1. Symmetric two-point sources

A particular, although rather important, class of two-point
sources is the one comprising those sources for which the two
points are completely equivalent, as far as their coherence–
polarization properties are concerned. This means, for
instance, that the polarization matrices of the fields at the
holes are identical, but also that one cannot distinguish one
field from the other on the basis of correlation measurement
involving both the holes. In other words, all the correlation
functions pertinent to the components of the electric field,
namely, J i j

αβ (i, j = 1, 2;α, β = x, y) are required to
remain unchanged on interchanging the indices i and j . This
may appear a rather severe requirement, but we shall see
that significant examples of sources belong to such a class.
On the other hand, very simple expressions are obtained for
eigenvalues and modes of symmetric two-point sources.

From a mathematical point of view, a symmetric two-
point source is characterized from the fact that J i j

αβ = J ji
αβ =

(J i j
βα)

∗, where the asterisk denotes complex conjugation and
the latter equality being a consequence of the definition of
J i j
αβ [13]. This means that all the four submatrices Ĵi j

appearing in equation (16) are Hermitian. In particular, the
diagonal elements of every submatrix are real while the off-
diagonal ones are mutually complex conjugated. Then, the
corresponding ρ̂ matrix takes the form

ρ̂ =
⎡
⎢⎣

a c α γ

c∗ b γ ∗ β

α γ a c
γ ∗ β c∗ b

⎤
⎥⎦ . (27)

The parameters appearing in equation (27) cannot be
chosen at will, because they must guarantee that certain
requirements are met. First of all, since the diagonal blocks,
Ĵii(i = 1, 2), coincide with the polarization matrices at the
two points of the Young interferometer, they must necessarily
be Hermitian and non-negative definite [10]. In particular, this
implies that a and b are real non-negative quantities while the
Schwartz inequality fixes an upper bound for the modulus of
the complex number c, namely

|c| �
√

ab. (28)

For the class of sources considered here, even the off-
diagonal blocks, Ĵi j(i �= j ), accounting for the correlations
between the field components at the two points, are Hermitian,
but they need not be positive semidefinite, so that α and β are
real quantities but they may also be negative. The Schwartz
inequality, applied to the elements of such blocks, gives

|α| � a; |β| � b; |γ | �
√

ab. (29)

Moreover, since the whole ρ̂ matrix has to be non-negative
definite [24], all its eigenvalues are required to be greater than
or equal to zero. This imposes further constraints to the choices
of the parameters appearing in equation (27), as we shall see in
the following.

It is worthwhile to stress that, due to the form of the matrix
in equation (27), the fields at the two pinholes are characterized

by the same polarization matrix. In particular, they have the
same intensity, i.e.

Iph = a + b, (30)

and the same polarization degree, namely,

Pph =
√

(a − b)2 + 4|c|2
(a + b)

(31)

which, from equation (28), is seen to be bounded between 0
and 1.

3.2. Modal expansion of a symmetric two-point source

Here, the modal structure of a symmetric two-point source will
be deduced, evaluating eigenvalues and modes of the ρ̂ matrix
in equation (27).

The eigenvalues of ρ̂ can be calculated in closed form
directly by solving the pertinent secular equation. In the case
of the matrix in equation (27), some algebraic manipulations
lead to the following result:

λ1 = Q+ + R+
2

, λ2 = Q+ − R+
2

,

λ3 = Q− + R−
2

, λ4 = Q− − R−
2

,

(32)

where the quantities Q± and R± have been defined as

Q± = (a + b) ± (α + β);

R± =
√

[(a − b) ± (α − β)]2 + 4 |c ± γ |2,
(33)

respectively.
The eigenvalues are required to be positive, so that it must

be Q± � R±. This imposes further conditions on the values
the parameters can assume. In particular, after simple algebra
the non-negativity condition of the ρ̂ matrix turns out to be the
following:

|c ± γ |2
(a ± α)(b ± β)

� 1, (34)

which, together with equations (28) and (29), will be taken for
granted from now on.

Once the four eigenvalues are known, also the eigenvec-
tors of the matrix ρ̂ can be analytically evaluated by solving
four linear systems. After some algebraic manipulation, they
turn out to be

Ψ1 = N+

⎡
⎢⎣

φ+
1

φ+
1

⎤
⎥⎦ ; Ψ2 = N+

⎡
⎢⎣

1
−φ∗+

1
−φ∗+

⎤
⎥⎦ ;

Ψ3 = N−

⎡
⎢⎣

φ−
1

−φ−
−1

⎤
⎥⎦ ; Ψ4 = N−

⎡
⎢⎣

1
−φ∗−−1
φ∗−

⎤
⎥⎦ ,

(35)

where φ± is given by

φ± = (a − b) ± (α − β) + R±
2(c ± γ )∗

, (36)
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Figure 1. Polarization, supposed linear, of the modes at the two
Young holes.

and

N± = 1√
2(1 + |φ±|2)

(37)

is a normalization factor.
On examining equation (35), we note several general

characteristics of the modes. First of all, their power is
evenly distributed between the two holes. Furthermore, the
polarization state of all the modes is the same at the two points,
i.e. the modes are uniformly polarized. Such considerations
allow us to identify the polarization state of each of the modes
by the Jones vector (Φn,1) pertinent to the field emerging from
one of the Young pinholes.

Moreover, although the polarization state of the modes
depends on the choice of the parameters, the first two modes
are always mutually orthogonal (i.e. Φ†

1,1Φ2,1 = 0) and

the same happens for the last two modes (Φ†
3,1Φ4,1 =

0), even though (in general) their polarization are different.
Figure 1 shows the polarization (which is supposed to be linear,
for convenience of representation) of typical mode fields in
correspondence with the Young holes.

As a further consequence of the analytical form of the
modes, the fields emerging from the two pinholes are in phase
for the modes Ψ1 and Ψ2, while they are in opposition for the
modes Ψ3 and Ψ4. Such relations are made evident in figure 1
by the arrow directions. Some general consequences of the
above properties will be derived in section 3.3.

3.3. Coherence–polarization properties of the interference
pattern

In the present case, due to the properties of the modes
obtained in the previous subsection, some general features of
the radiation across the observation plane can be deduced at
once. First of all we note that, across the output plane of the
interferometer, each of the modes gives rise to a sinusoidally
varying field distribution. In particular, the Jones vector of the
output field due to the modes Ψ1 and Ψ2 will be of the form
Φi,1 cos(K ξ); (i = 1, 2), while, for the remaining two modes
it will be Φi,1 sin(K ξ); (i = 3, 4), where ξ is the transverse
coordinate across the output plane and K gives an account of
the period of the fringe pattern. The intensities corresponding

Figure 2. Intensities produced across the output plane by the four
modes. P denotes the fringe period.

to the four modes, Ii (i = 1, 2, 3, 4), could appear as in
figure 2, where they are plotted for a typical case as functions
of the reduced coordinate ξ/P , with P = 2π/K being the
fringe period.

More, in general, from the lack of correlation among the
modes, the polarization matrix at the transverse coordinate ξ

turns out to be

Ĵout(ξ, ξ ) =
(
λ1Φ1,1Φ

†
1,1 + λ2Φ2,1Φ

†
2,1

)
cos2(K ξ)

+
(
λ3Φ3,1Φ

†
3,1 + λ4Φ4,1Φ

†
4,1

)
sin2(K ξ). (38)

It is easily seen that each of the elements of Ĵout

presents oscillations with respect to ξ , in agreement with
the generalized interference laws derived in [13]. The same
behaviour is exhibited, of course, by the Stokes parameters of
the field [21, 22], which are linear combinations of the matrix
elements.

In particular, the intensity distribution, corresponding to
the Stokes parameter S0, turns out to be

Iout(ξ ) = Tr{ Ĵout(ξ, ξ )}
= (λ1 + λ2) cos2(K ξ) + (λ3 + λ4) sin2(K ξ), (39)

and it is seen to consist of two fringe patterns: one of them,
with power given by λ1 + λ2, is centred on the axis, while the
other one, with power λ3 + λ4, is laterally shifted by half a
period (see figure 2).

At the centre of the interference pattern (ξ = 0) only the
first two modes contribute to the total intensity, which turns out
to be proportional to λ1 + λ2. More precisely,

Iout(0) = λ1 + λ2 = Q+ = (a + b) + (α + β). (40)

Moreover, since λ1 + λ2 � λ3 + λ4 [as can be deduced
from equation (32)], the central point of the fringe pattern is
a maximum of the intensity distribution, while the minimum
is reached half a period away from the maximum and equals
λ3 + λ4. This means that the visibility of the fringe pattern
turns out to be

Vout = Imax − Imin

Imax + Imin
= λ1 + λ2 − (λ3 + λ4)

λ1 + λ2 + (λ3 + λ4)
= α + β

a + b
, (41)

regardless of the values of c and γ .
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Such a value of visibility coincides with the modulus
of the degree of coherence that would be measured by
means of the Young interferometer if the vectorial character
of the radiation was neglected and no anisotropic optical
elements were used in the detection process [13, 14]. It
should be mentioned that other quantities have been defined
to quantify the correlations among the field components of
an electromagnetic field at two points, which are not always
related to the visibility of the fringes in the interference pattern
of a Young interferometer [34, 16, 18, 35, 36]. Some of these
quantities, in particular, can be easily expressed in terms of the
eigenvalues of the ρ̂ matrix [16, 35].

As far as the three remaining Stokes parameters are
concerned, since the values of their ‘visibilities’ depend on the
specific polarization states of the modes, they will be discussed
in the section devoted to the examples.

The knowledge of the vector modal structure of the field
emerging from the pinholes allows one to evaluate also the
degree of polarization of the radiation across the observation
plane. Although the behaviour of such a quantity as a function
of the transverse coordinate depends on the particular form of
the modes and, in particular, on their polarization states, in the
present case the value it takes at the central point of the fringe
pattern can be evaluated at once, from the eigenvalues alone.
In fact, since only the first two modes contribute to the on-axis
intensity and such two modes have orthogonal polarizations,
the axial degree of polarization turns out to be

Pout(0) = λ1 − λ2

λ1 + λ2
= R+

Q+

=
√

[(a − b) + (α − β)]2 + 4 |c + γ |2
(a + b) + (α + β)

, (42)

which generally differs from that at the pinholes (equa-
tion (31)). The dependence of the axial degree of polarization
on the coherence properties of the radiation impinging on the
Young mask has been the subject of some recent work [17, 19].
Incidentally, we note that the requirement that the axial degree
of polarization be a quantity less than unity is always fulfilled,
due to the condition in equation (34).

In section 4, the above results will be applied to the case
of a two-point EGSM source and it will be shown in detail how
the knowledge of the modal structure of the field emerging
from a Young interferometer can be used to get information
about the coherence–polarization properties of the interference
field.

4. Modal expansion of a two-point EGSM source

4.1. Two-point EGSM sources

We recall that the mutual intensity of an ordinary, scalar GSM
source, say Jsc(r1, r2), takes the form [2]

Jsc(r1, r2) = I0 exp

[
−
(
r 2

1 + r 2
2

)
4σ 2

− (r1 − r2)
2

2δ2

]
, (43)

where I0 is a constant intensity factor, while σ and δ are the
widths of the intensity profile and the degree of coherence,
respectively.

EGSM sources have been defined [26] as those sources
for which all the elements of the pertaining BCP matrices are
of the form of equation (43). More explicitly, we have (with
α, β = x, y)

Jαβ(r1, r2) = Iαβ exp

[
−
(
r 2

1 + r 2
2

)
4σ 2

αβ

− (r1 − r2)
2

2δ2
αβ

]
. (44)

Hermiticity of Ĵ (r, r′) requires [13, 26, 31] that Ixx and
Iyy are real quantities, while Ix y = I ∗

yx . However, the argument
of Ix y gives account of a phase difference between the x and
the y component of the field, which could be easily removed
by means of a suitable retarder. Without loss of generality, it is
then customary to take Ix y as real and positive as well, so that
Ix y = Iyx � 0. It also follows from the Hermiticity of the BCP
matrix that σx y = σyx and δx y = δyx . Moreover, for simplicity
we use the hypothesis that σαβ = σ ; (α, β = x, y).

Further constraints come from the fact that Ĵ (r, r′) has to
be non-negative definite [13]. It has been found, for instance,
that a sufficient condition ensuring positive semidefiniteness is
the following [26, 31]:

max
{
δxx , δyy

}
� δx y � min

{
δxx , δyy

}√√Ixx Iyy

Ix y
. (45)

In conclusion, the BCP matrix of the EGSM source has
the form

Ĵ (r1, r2) = exp

(
−r 2

1 + r 2
2

4σ 2

)

×
[

Ixx exp[− (r1−r2)
2

2δ2
xx

] Ix y exp[− (r1−r2)
2

2δ2
xy

]
Ix y exp[− (r1−r2)

2

2δ2
xy

] Iyy exp[− (r1−r2)
2

2δ2
yy

]

]
. (46)

Now we can apply the vector-mode theory of coherence
to the case in which a EGSM beam impinges onto the mask
of a Young interferometer. For simplicity, we shall suppose
the pinholes to be located at p1 = (x, 0) and p2 = (−x, 0).
So, from equation (16), the corresponding ρ̂ matrix has
just the form of equation (27), apart from the overall factor
Iyy exp(−x2/2σ 2), with parameters given by

a = Ixx /Iyy; b = 1;
c = c∗ = Ix y/Iyy; α = (Ixx /Iyy)μxx ;
β = μyy; γ = γ ∗ = (Ix y/Iyy)μx y,

(47)

where, for brevity, the following quantities have been
introduced:

μxx = exp

(
−2x2

δ2
xx

)
; μyy = exp

(
−2x2

δ2
yy

)
;

μx y = exp

(
−2x2

δ2
x y

)
,

(48)

which represent the normalized correlation functions among
the transversal components of the field at the two points.

Of course, all considerations made in section 3 are
applicable to such a choice of the parameters. In particular,
the intensity of the fields emerging from each of the pinholes
turns out to be

Iph = 1 + a, (49)
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and the polarization degree at the pinholes is

Pph =
√

(a − 1)2 + 4c2

(a + 1)
. (50)

Moreover, all the components of the modes (equa-
tions (35) and (36)) take real values, so that the modes are
linearly polarized. A more detailed analysis of the modal struc-
ture of the two-point EGSM source and of its consequences to
the coherence–polarization properties of the fringe pattern will
be presented in sections 4.2 and 4.3, where some particular
choices of the parameters will be discussed.

4.2. Orthogonal field components with equal power

Here we consider the case a = b = 1 and μxx = μyy. This
corresponds to taking radiation having components along x and
y with the same power at the Young holes, and with δxx =
δyy. Therefore, this case reduces to that considered in [17],
where the relationship between degree of coherence and degree
of polarization at the central point of a Young interference
pattern was first studied, and that of [20], where the coherence–
polarization features of the radiation were investigated across
the whole pattern.

We can evaluate eigenvalues and modes from the general
expressions given in section 3.2, thus obtaining

Q± = 2(1 ± μxx ); R± = 2c(1 ± μx y), (51)

so that the eigenvalues turn out to be

λ1 = 1 + μxx + c(1 + μx y),

λ2 = 1 + μxx − c(1 + μx y),

λ3 = 1 − μxx + c(1 − μx y),

λ4 = 1 − μxx − c(1 − μx y).

(52)

Furthermore, from equation (36) we have φ± = 1, so that
the modes are given by

Ψ1 = 1

2

⎡
⎢⎣

1
1
1
1

⎤
⎥⎦ , Ψ2 = 1

2

⎡
⎢⎣

1
−1
1

−1

⎤
⎥⎦ ,

Ψ3 = 1

2

⎡
⎢⎣

1
1

−1
−1

⎤
⎥⎦ , Ψ4 = 1

2

⎡
⎢⎣

1
−1
−1
1

⎤
⎥⎦ .

(53)

The modes Ψ1 and Ψ3 are polarized along a line at π/4 in
the xy plane, while Ψ2 and Ψ4 are polarized at −π/4.

Using equations (38), (52), and (3) the polarization matrix
across the observation plane turns out to be

Ĵout(ξ, ξ )

=
[

1 + μxx cos(2K ξ) c[1 + μx y cos(2K ξ)]
c[1 + μx y cos(2K ξ)] 1 + μxx cos(2K ξ)

]
, (54)

that allows one to completely characterize the radiation in a
point of the fringe pattern. In particular, from equation (3),
the Stokes parameters can be evaluated as functions of the
transverse coordinate as

S0(ξ ) = 2 [1 + μxx cos(2K ξ)] ; S1(ξ ) = 0;
S2(ξ ) = 2c

[
1 + μx y cos(2K ξ)

] ; S3(ξ ) = 0,
(55)

and are shown to present typical sinusoidal oscillations around
an average value [21], which are reminiscent of the analogous
behaviour of the elements of the polarization matrix [13].

As far as the degree of polarization is concerned, in the
present case we obtain

Pph = c, (56)

at both pinholes of the Young interferometer, while across the
output plane it turns out to be

Pout(ξ ) = c
1 + μx y cos(2K ξ)

1 + μxx cos(2K ξ)
. (57)

It is worth showing that the latter result can be directly
obtained by simply considering the vector modal structure of
the field emerging from the Young holes, without resorting to
the explicit form of the polarization matrix. In the present case,
in fact, the modes Ψ1 and Ψ3 are linearly polarized along the
same direction (and the same is true for Ψ2 and Ψ4) so that the
interference pattern consists of a field polarized at +π/4 with
intensity profile given by I+ = λ1 cos2(K ξ)+λ3 sin2(K ξ) and
a field polarized at −π/4 with intensity I− = λ2 cos2(K ξ) +
λ4 sin2(K ξ). The resulting degree of polarization is therefore
evaluated as

Pout(ξ ) = I+ − I−
I+ + I−

= (λ1 − λ2) cos2(K ξ) + (λ3 − λ4) sin2(K ξ)

(λ1 + λ2) cos2(K ξ) + (λ3 + λ4) sin2(K ξ)
, (58)

which, from equation (52), corresponds to the quantity in
equation (57). Therefore, even the degree of polarization is
an oscillating function of ξ but, differently from the Stokes
parameters, it is not sinusoidally modulated. Since μxx � μx y

(from equations (47) and (45)), its maximum value is reached
at the central point of the diffraction pattern, where it equals

Pout(0) = c
1 + μx y

1 + μxx
, (59)

which generally differs from Pph, unless μx y = μxx , while the
minimum, reached half a fringe period away from the centre
(at the coordinate, say, ξ = ξmin), is

Pout(ξmin) = c
1 − μx y

1 − μxx
. (60)

Finally, a visibility can be defined even for the degree of
polarization and turns out to be

Vpd = P(0) − P(ξmin)

P(0) + P(ξmin)
= μx y − μxx

1 − μxxμx y
. (61)

4.3. No correlation between orthogonal components

As a last example, we briefly consider the case c = 0,
which means that there is no correlation between the x and
y components of the field impinging onto the Young mask.
Furthermore, we put again a = b = 1, so that the considered
field reproduces the one recently used to study experimentally
the relationship between coherence of the field at the pinholes
and the polarization degree in the observation plane [19].

Without any loss of generality, we choose as x the axis
along which the correlation length between corresponding field
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components is maximum, i.e. μxx > μyy. In such a case, it
can be easily verified that from equation (33) we have

Q± = 2 ± (μxx + μyy); R± = μxx − μyy, (62)

so that the eigenvalues are

λ1 = 1 + μxx ; λ2 = 1 + μyy;
λ3 = 1 − μyy; λ4 = 1 − μxx ,

(63)

while, since in the limit c → 0 both the function φ+ and φ−
diverge, the corresponding modes reduce to

Ψ1 = 1√
2

⎡
⎢⎣

1
0
1
0

⎤
⎥⎦ , Ψ2 = 1√

2

⎡
⎢⎣

0
1
0
1

⎤
⎥⎦ ,

Ψ3 = 1√
2

⎡
⎢⎣

1
0

−1
0

⎤
⎥⎦ , Ψ4 = 1√

2

⎡
⎢⎣

0
−1
0
1

⎤
⎥⎦ .

(64)

This means that the modes Ψ1 and Ψ3 are polarized along
x while Ψ2 and Ψ4 are polarized along y.

Even in this case, the whole polarization matrix, as well
as the Stokes parameters, across the observation plane, could
be obtained from the modal structure. However, we limit
ourselves to the evaluation of the polarization degree. The
present situation resembles very closely the one of section 4.2.
The modes Ψ1 and Ψ3 as well as Ψ2 and Ψ4 are linearly
polarized along the same direction, which now coincides with
the x and y axis, respectively. The interference pattern then
consists of a field polarized along x with intensity profile given
by Ix = λ1 cos2(K ξ) + λ3 sin2(K ξ) and a field polarized
along y with intensity Iy = λ2 cos2(K ξ) + λ4 sin2(K ξ). The
resulting degree of polarization is therefore evaluated as

Pout(ξ ) = Ix − Iy

Ix + Iy

= (λ1 − λ2) cos2(K ξ) + (λ3 − λ4) sin2(K ξ)

(λ1 + λ2) cos2(K ξ) + (λ3 + λ4) sin2(K ξ)

= μxx − μyy

2 + (μxx + μyy) cos(2K ξ)
, (65)

which is an oscillating function of ξ , so that it does not
coincide, in general, with the one at the pinholes (that is,
Pph = 0), unless μxx = μyy.

5. Conclusions

The Young interferometer represents the paradigmatical tool
for investigating the correlations between the values of a
light field at two distinct points, in both the scalar and
the electromagnetic analyses. In both cases, in fact, the
spatial characteristics of the interference pattern are influenced
by the correlation properties of the incident radiation and,
conversely, all second-order correlation functions of the
incident field can be deduced from measurements on the
intensity distribution across the output plane of a suitably
modified Young interferometer [2, 13, 37].

The modal theory of coherence for vector fields, applied
to two-point sources, offers a useful and easy tool for the

study of the relationships between the coherence–polarization
properties of the radiation across the output plane of a Young
interferometer and those of the beam at the pinholes. We
have applied such concepts to the case of a symmetric two-
point source, that is a source for which the two points cannot
be distinguished from one another on the basis of coherence–
polarization measurements involving all the field components
at both the points. As an example of such sources we
considered a Young interferometer fed by an incident beam of
the EGSM type.

In particular, we exploited one of the most useful and
intriguing results of the modal theory of coherence, i.e. that
any partially coherent and partially polarized field emerging
from the Young mask, as well as the one present across the
output plane of the interferometer, can always be thought of
as originated by the superposition of (at most) four perfectly
polarized and mutually uncorrelated modes, having powers
proportional to the eigenvalues of the two-point source. This
leads, in particular, to the direct evaluation of some parameters
of the interference pattern, such as the fringe visibility and
the polarization degree. On the other hand, such a model
suggests a way to synthesize pairs of electromagnetic fields
endowed with prescribed correlation properties starting from
the superposition of four mutually uncorrelated perfectly
polarized beams.
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