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Maximizing Young’s fringe visibility through
reversible optical transformations

Franco Gori and Massimo Santarsiero
Dipartimento di Fisica, Università Roma Tre and CNISM, Via della Vasca Navale 84, I-00146 Rome, Italy

Riccardo Borghi
Dipartimento di Elettronica Applicata, Università Roma Tre and CNISM, Via della Vasca Navale 84,

I-00146 Rome, Italy

Received November 15, 2006; accepted November 28, 2006;
posted December 8, 2006 (Doc. ID 77141); published February 15, 2007

When a Young’s interferometer is fed by an electromagnetic beam, fringes of low, or even zero, visibility do
not necessarily indicate lack of correlation between two typical field components at the pinholes. The pas-
sage of light that emerges from one of the pinholes through a nonabsorbing anisotropic optical element may
enhance the visibility. We inquire about the maximum visibility that can be attained through such a revers-
ible transformation (polarizers being excluded). We find that such a quantity can be evaluated in closed
form. Its value is directly related to the Ky Fan 1-norm of the correlation matrix of the illuminating beam.
© 2007 Optical Society of America
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In recent years, there has been considerable interest
in the coherence properties of electromagnetic
beams.1–12 In addition, a couple of pioneering papers
about coherence of an electromagnetic field in the
space–time domain were published long ago by
Karczewski.13,14 In particular, the visibility of fringes
seen at the output of a Young’s interferometer when
the field correlation matrix of the illuminating beam
is taken into account has been investigated. An ex-
ample, used in Refs. 7 and 15 and sometimes referred
to when discussing quantum erasers,16 is of help.
Suppose that the beam is linearly polarized along the
x-axis at one pinhole and linearly polarized along the
y-axis at the other. Further, suppose that such fields
have the same optical intensity and are perfectly cor-
related. No fringes are seen, because light has or-
thogonal states of polarization at the pinholes. Yet,
on inserting a � /2 rotator at one of the pinholes,
fringes with unit visibility will appear. The same re-
sult can be obtained by covering both holes with a lin-
ear polarizer set at an angle � /4 between the x- and
the y-axes. In both cases the original state of the field
is modified by the presence of the anisotropic ele-
ment. There is, however, a basic difference between
them. In fact, in the first case the original state can
be restored simply by using a −� /2 rotator, whereas
in the second case certain field components are lost in
an unrecoverable way. In other words, the first type
of element (rotator) causes a reversible transforma-
tion, while the second one (polarizer) induces an irre-
versible transformation. As far as intrinsic properties
of the illuminating field are concerned, reversible
transformations seem to be more significant than ir-
reversible ones. To clarify this point, let us consider a
further example. Suppose that the fields at the pin-
holes have completely correlated x-components and
completely uncorrelated y-components. Then a linear

polarizer aligned to the x-axis produces perfect
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fringes, while a polarizer aligned to the y-axis gives
no fringes at all. In both alignments, some important
information about the fields has been destroyed.

In this paper, we concentrate on reversible trans-
formations and determine the value of visibility that
can be achieved by inserting at one pinhole a general
anisotropic nonabsorbing element and acting on its
parameters until a maximum of the visibility is
reached. As we shall see, the value of the maximum
visibility is easily evaluated in closed form. Further-
more, such a value does not change if a second aniso-
tropic element is inserted at the other pinhole.

Let us recall that, in the space–time domain, we
can account for the complete set of correlation func-
tions at two typical points r1 and r2 by using the
beam coherence-polarization (BCP) matrix,2,3

Ĵ�r1,r2� = �Jxx�r1,r2� Jxy�r1,r2�

Jyx�r1,r2� Jyy�r1,r2�� , �1�

whose elements J���r1 ,r2�, �� ,�=x ,y� give the cross-
correlation between the �- and �-components of the
electric field at points r1 and r2 for zero time delay. It
was noted in Refs. 2 and 3 that the visibility of
fringes seen at the output of a Young’s interferometer
depends only on the trace of the matrix (when r1 and
r2 specify the positions of the pinholes). To synthesize
this result, an equivalent mutual intensity at the pin-
holes was defined as

Jeq�r1,r2� = Tr�Ĵ�r1,r2��, �2�

where Tr stands for trace. The meaning of this quan-
tity is as follows. If no anisotropic elements are used,
then the visibility predicted by the vectorial theory is
the same as that of the ordinary scalar theory,17 pro-
vided that the usual mutual intensity is replaced by
Jeq. More explicitly, the visibility of the fringes, say V,

2,3,17
in the interference pattern is given by
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V =
2�Jeq�r1,r2��

I�r1� + I�r2�
, �3�

where I�rj�=Tr�Ĵ�rj ,rj��, j=1,2.
From now on, we shall be interested only in the el-

ements of the BCP matrix for which r1 and r2 are po-
sition vectors of the two pinholes of a Young’s inter-
ferometer. These elements form a 2�2, not
necessarily Hermitian, matrix, that will be denoted
in the following by Ĵ12.

To examine the changes suffered by the visibility
when a nonabsorbing anisotropic element is inserted
into the path of light emerging from one of the pin-
holes, we first note that the denominator of Eq. (3) re-
mains unchanged. Therefore the change of V is deter-
mined by that of Jeq. Next, let us recall18 that a
nonabsorbing anisotropic element can always be
specified by a suitable 2�2 unitary matrix, i.e., an el-
ement of the U�2� group, say M̂. The unitary charac-
ter implies

M̂M̂† = M̂†M̂ = Î, �4�

where the daggers denote Hermitian conjugation and
Î stands for the identity matrix. When such an ele-
ment is located at one of the pinholes, matrix Ĵ12 goes
onto Ĵ12� = Ĵ12M̂.3 The modulus of Tr�Ĵ12� � will deter-
mine the new fringe visibility at the output of the
Young’s interferometer.

In particular, for maximizing the fringe visibility, it
is sufficient to maximize the quantity �Tr�Ĵ12M̂��,
when M̂ spans the U�2� group. Taking into account
Eq. (2), we shall denote such a maximum by �Jeq�Max.

The above maximization problem is well known in
the context of matrix analysis, and its solution is pro-
vided by the so-called Ky-Fan 1-norm.19 More pre-
cisely, consider the singular value decomposition of
the matrix Ĵ12,

18 according to which we can always
write

Ĵ12 = ÛŜV̂†, �5�

where Ŝ is a 2�2 diagonal matrix whose elements,
say �1 and �2, are the (nonnegative) singular values,
while Û and V̂ are suitable unitary matrices whose
columns, say, ui and vi �i=1,2�, respectively, are re-
lated to �i by the following coupled linear equations:

Ĵ12vi = �iui, Ĵ12
† ui = �ivi. �6�

In particular, the squares of the �i coincide with the
eigenvalues of the (nonnegative definitive) operators
Ĵ12

† Ĵ12 and Ĵ12Ĵ12
† .

The Ky-Fan n-norm of the matrix Ĵ12, say, Nn�Ĵ12�,
is defined as19

Nn�Ĵ12� = ��1
n + �2

n�1/n. �7�

In particular, it is possible to prove19 that N1�Ĵ12� has

the following variational characterization:
N1�Ĵ12� = �1 + �2 = max��Tr�Ĵ12M̂��:M̂ � U�2��, �8�

which directly provides the solution to our problem.
Moreover, the maximum value is attained by choos-
ing as M̂ the matrix M̂= V̂Û†. In fact, on using Eqs.
(4) and (5), such a choice leads to

Ĵ12M̂ = ÛŜV̂†V̂Û† = ÛŜÛ†, �9�

so that

Tr�Ĵ12M̂� = Tr�ÛŜÛ†� = Tr�Ŝ� = �1 + �2, �10�

where use has been made of the fact that the matri-
ces ÛŜÛ† and Ŝ are connected by a similarity trans-
formation so that they have the same trace.

This proves that, for any given BCP matrix of the
field at the pinholes, the equivalent mutual intensity
obtained by the insertion of a suitable nonabsorbing
anisotropic element at one of the pinholes has a
maximum modulus given by the positive number

�Jeq�Max = N1�Ĵ12� = �1 + �2, �11�

which is invariant under U�2� transformations. We
further note that the anisotropic element that leads
to �Jeq�Max is determined up to a phase factor. As seen
above, in fact, such an element is specified by the
Jones matrix M̂= V̂Û†. However, applying to Ĵ12 a
matrix of the form M̂ exp�i��, with arbitrary real �,
would also transform Ĵ12 into a matrix whose trace
has a modulus equal to �Jeq�Max. Finally, we remark
that the same results would have been obtained with
a further anisotropic element inserted at the second
pinhole.

It should be recalled that a somewhat similar ap-
proach has been recently used by Réfrégier and
co-workers,10,15,20 who proposed new definitions of de-
grees of coherence as the singular values of a suitable
matrix, obtained by Ĵ. It has also been shown that
such degrees of coherence can be related to the vis-
ibility of the fringes produced in a Young’s interfer-
ometer equipped with both polarizers and nonabsorb-
ing anisotropic elements. Such a setup, however,
introduces irreversible transformations on the im-
pinging field. This remark also applies to the scheme
proposed in a paper by Mujat et al.21 relating to the
Fresnel–Arago laws, where polarizers and rotators
were inserted at the pinholes.

It is easy to show that the Ky Fan 1-norm of Ĵ12
can be expressed in closed form so that �Jeq�Max can be
evaluated without explicitly calculating the singular
values. In fact, as already said, �1

2 and �2
2 are the ei-

genvalues of Ĵ12Ĵ12
† . Furthermore, the determinant of

the matrix Ŝ appearing in Eq. (5) is equal to the
modulus of the determinant of Ĵ12. As a consequence,
we have

�Jeq�Max = �Tr�Ĵ12Ĵ12
† � + 2�Det�Ĵ12��	1/2, �12�

where Det stands for the determinant.

Equation (12) has a further virtue. It shows that
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�Jeq�Max can be related to the so-called electromagnetic
degree of coherence,7 which gives account of the cor-
relations between all the pairs of components of the
electric field at the two pinholes of a Young’s interfer-
ometer so that it is not directly associated with the
visibility of the interference pattern.22–24 In such an
approach, the equivalent mutual intensity in Eq. (2)
is replaced by a quantity, say, JE, defined as the
Frobenius norm of Ĵ12, i.e.,19

JE = 
Tr�Ĵ12Ĵ12
† �, �13�

which, from Eq. (7), is seen to coincide with the Ky
Fan 2-norm of matrix Ĵ12. On comparing Eqs. (12)
and (13), the following relation is obtained:

�Jeq�Max = �JE
2 + 2�Det�Ĵ12��	1/2, �14�

from which, in particular, it follows that �Jeq�Max�JE.
As can be easily verified, the equality sign holds if
and only if Ĵ12=a1a2

†, with a1 and a2 being two suit-
able vectors.

In scalar coherence theory,17 the phrase degree of
coherence was uniquely related to fringe visibility.
The same type of relation was suggested by Wolf for
the vectorial treatment,6 making reference to a
Young’s interferometer in which the incoming field is
not modified by the insertion of any anisotropic ele-
ment. In the electromagnetic case, however, we have
seen that the same phrase (possibly supplemented by
some adjective) is used with different meanings. In
other words, the terms coherence and correlation are
not universally used as synonyms. On the other
hand, there seems to be no doubt about the meaning
of the word visibility. In the present paper, we looked
for the maximum value that the visibility may reach
through the use of nonabsorbing anisotropic ele-
ments. In this way, the field undergoes only a revers-
ible transformation. Accordingly, the quantity �Jeq�Max
specified by Eq. (12) can be thought of as an intrinsic
feature of the electromagnetic field at the pinholes.

F. Gori’s e-mail address is gori@uniroma3.it.
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