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Polarization invariance in a Young interferometer
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Conditions ensuring that the polarization properties at the output plane of a Young interferometer fed by an
electromagnetic partially coherent beam are the same as those at the pinholes are derived. Such a behavior is
interpreted in terms of the vector modes of the electromagnetic source corresponding to the field emerging from
the Young pinholes. © 2007 Optical Society of America
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. INTRODUCTION
he effects on the polarization features of the electromag-
etic field across the output plane of a Young interferom-
ter due to the correlations existing between the fields
merging from the two pinholes of the mask have been
he subject of several recent works [1–7].

It has been shown, in particular, that the elements of
he polarization matrix [8] of the field across the output
lane of the interferometer may differ from those of the
eld at the pinholes as the result of a generalized inter-
erence law [1] involving the second-order correlations be-
ween the field components at the pinholes. This happens
ven when the fields at the two points present identical
ocal polarization properties. As a consequence, the degree
f polarization [2,4], as well as the Stokes parameters
5,6], may present an oscillating behavior across the in-
erference pattern and generally differ from those of the
mpinging field. Theoretical predictions about the effects
f coherence on the on-axis polarization degree in a Young
nterferometer were experimentally confirmed in [9].

In the present paper, the conditions assuring that the
olarization properties of the field at any point across the
ringe pattern are the same as those at the pinholes will
e determined. It will be assumed that the fields at the
inholes are characterized by polarization matrices that
re mutually proportional, so that the two fields present
he same polarization features but may carry different
owers. Such an invariance condition will be shown to be
eflected onto the form of the 4�4 matrix comprising all
he second-order correlations among the field components
t the pinholes [3,7].
The behavior of the field across the output plane of the

nterferometer will then be interpreted by using the tools
rovided by the modal theory of coherence for vector fields
10,11], according to which any partially coherent electro-
agnetic source can be thought of as the superposition of
certain number, possibly infinite, of mutually uncorre-

ated, perfecly correlated, and polarized field distribu-
ions. While, in general, the problem of the mode determi-
ation in the vector case is a very difficult task to be
olved analytically, it becomes much simpler when the
1084-7529/07/113493-7/$15.00 © 2
ource consists of a pair of points in the space (a so-called
wo-point source), as is the case for the radiation emerg-
ng from the holes of an ideal Young mask [3,7]. As we
hall see, it turns out to be quite elementary if the above
olarization-invariance condition is assumed.
The paper is organized as follows. In Section 2 the the-

retical background of the modal theory of coherence for
lectromagnetic beams is breifly recalled, together with
ts application to two-point sources. The invariance condi-
ion is then derived in Section 3, while general properties
f the pertinent modal expansion are discussed in Section
. Finally, a detailed analysis is given in Section 5 under
implifying assumptions about the values of the source
arameters.

. PRELIMINARIES
he complete set of the second-order, space-time correla-

ion functions of the electromagnetic field at two points
an be described, in the paraxial limit, by the beam
oherence–polarization (BCP) matrix [1,12], defined as
he correlation between the Jones vectors of the fields at
he two points. More precisely, if one introduces the Jones
ector of the electric field at the coordinate r as the col-
mn vector

E�r,t� = �Ex�r,t�

Ey�r,t�� , �1�

he corresponding BCP matrix at points r1 and r2 is de-
ned as

Ĵ�r1,r2� = �E�r1,t�E†�r2,t�� = �Jxx�r1,r2� Jxy�r1,r2�

Jyx�r1,r2� Jyy�r1,r2�� ,

�2�

here the dagger denotes Hermitian conjugation and the
ngle brackets time average. In the case of polychromatic
adiation a cross-spectral density (CSD) tensor in the
pectral domain can be defined [13], but the two defini-
ions are equivalent if quasi-mochromatic sources are
onsidered. Accordingly, although in the following we
007 Optical Society of America
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hall use the definition given in Eq. (2), our results could
e easily transposed in the space–frequency domain.
The local polarization properties of the beam are speci-

ed by the BCP matrix evaluated with r1=r2, which coin-
ides with the polarization (or coherence) matrix defined
n [8]. In particular, the optical intensity and the degree of
olarization at the coordinate r turn out to be

I�r� = Tr	Ĵ�r,r�
 �3�

nd

P�r� =�1 −
4Det	Ĵ�r,r�


�Tr	Ĵ�r,r�
2
, �4�

espectively, where Det stands for determinant and Tr for
race.

Some years ago, a modal theory of coherence for elec-
romagnetic partially coherent fields was presented
10,11] as an extension of the well-known Wolf ’s scalar
heory [14]. According to the former, any partially polar-
zed, partially coherent source can be thought of as ob-
ained from the incoherent superposition of a discrete,
ossibly infinite, number of perfectly correlated and per-
ectly polarized fields (the modes), the power carried by
ach mode being proportional to a suitably evaluated ei-
envalue.

Vector modes and eigenvalues are obtained by solving
he following system of coupled integral equations:

� Ĵ�r1,r2��n�r2�dr2 = �n�n�r1�, �5�

here �n�r� represents the Jones vector of the nth modes
nd �n its eigenvalue. Because of the nonnegative char-
cter of Ĵ�r1 ,r2�, it turns out that �n�0 for any n. Fur-
hermore, from the definition of vector modes, a Mercer
xpansion can be used to represent the BCP matrix,
amely,

Ĵ�r1,r2� = �
n

�n�n�r1��n
†�r2�. �6�

The determination of the modal structure becomes
uite simple in the case of two-point sources, that is,
hen only a pair of source points at a time is of interest,
s is the case for the radiation emerging from the pin-
oles of the mask of a Young interferometer. In fact, the
odes and the corresponding eigenvalues of a two-point

ource can be evaluated by solving the secular problem for
4�4 complex-valued matrix [3,7]. To show this, we rep-

esent the electric field vectors at the points p1 and p2 of
he mask plane by four-component column vectors,
amely,

��t� = �E1�t�

E2�t�� = �
Ex

�1��t�

Ey
�1��t�

Ex
�2��t�

Ey
�2��t�

� , �7�

here Ei�t��i=1,2� denotes the Jones vector of the trans-
erse electromagnetic field at the point located at p , and
i
�
�i��t� ��=x ,y� are its cartesian components. Accordingly,
4�4 correlation matrix, say �̂, can be defined as

�̂ = ���t��†�t�� =�Ĵ11 Ĵ12

Ĵ12
† Ĵ22

� , �8�

here Ĵij= �Ei�t�Ej
†�t�� �i , j=1,2� is the BCP matrix evalu-

ted at the points i and j, and eigenvalues and modes of
he two-point source are evaluated from the secular prob-
em for the matrix �̂, that is [7],

�̂�n = �n�n. �9�

In Eq. (9), the vector �n contains the field components
f the nth mode at the two pinholes, i.e.,

�n = ��n,1

�n,2
� = �

�n,x
�1�

�n,y
�1�

�n,x
�2�

�n,y
�2�
� , �10�

hile the eigenvalue �n is given by �n /S, with S being a
onstant having dimensions of a surface and related to
he actual size of the pinholes [7].

Since the BCP matrix is nonnegative definite [1], there
ill be four nonnegative eigenvalues and four mutually
rthogonal eigenvectors, and a Mercer’s expansion can be
ritten for the matrix �̂ as

�̂ = �
n=1

4

�n�n�n
† . �11�

rom a physical point of view, each of the modes repre-
ents a perfectly correlated field distribution at the pin-
oles, and any field distribution at the pinholes can be ob-
ained by incoherently superimposing such four modes.
ore precisely, one needs at most four modes because, in

ertain cases, one or more eigenvalues may vanish. This
eans, in particular, that all the characteristics of the ra-

iation across the observation plane can be deduced from
superposition scheme involving the vector modes of the
CP matrix at the pinholes. In fact, since the modes are
utually uncorrelated, the polarization matrix at the co-

rdinate 	 in the observation plane can be written as the
um of the polarization matrices produced by each of the
odes.

. INVARIANCE CONDITION
et us consider a Young interferometer fed by an electro-
agnetic field described by its own BCP matrix, and de-
ote by E1 and E2 the random variables representing the
ones vectors of the electric field at the two pinholes.
The Jones vector of the field at the output plane of the

nterferometer will be of the form

Eout�	� = E1eiK	 + E2e−iK	, �12�

here inessential proportionality factors, as well as the
xplicit dependence on time, have been omitted, 	 is the
ransverse coordinate, and K gives account of the geom-
try of the system and is related to the period of the fringe
attern.
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The BCP matrix at two points of the output plane can
e expressed in terms of the above Jones vector as follows:

Ĵout�	1,	2� = �Eout�	1�Eout
† �	2��, �13�

he local properties of the output field being evaluated by
etting 	1=	2=	, in which case the BCP matrix reduces to
he polarization matrix.

We want to determine the conditions under which the
ocal polarization properties of the output field are exacly
he same as those at the pinholes. Of course, such a re-
uirement makes sense only when the polarization matri-
es of the field at the two pinholes are proportional to
ach other. If we denote by Ĵ11 and Ĵ22 such matrices, we
hen require Ĵ11=�P̂ and Ĵ22=
P̂, with P̂ being a bona
de polarization matrix, i.e., a Hermitian positive
emidefinite 2�2 matrix. We can write P̂ in the form

P̂ = �a c

c* b� , �14�

here a and b are real quantities greater then or equal to
ero and c is a complex number such that, from the
chwartz inequality, �c�2�ab.
Let us now evaluate Ĵout�	 ,	�. From Eqs. (13) and (12)

e have

Ĵout�	,	� = �E1E1
†� + �E2E2

†� + �E1E2
†�e2iK	 + �E2E1

†�e−2iK	

= Ĵ11 + Ĵ22 + Ĵ12e
2iK	 + Ĵ12

† e−2iK	, �15�

o that it is evident that the only way to have Ĵout�	 ,	�
roportional to P̂ for any choice of the coordinate 	 is tak-
ng Ĵ12=�P̂, with � being a complex number. In such a
ay, the polarization matrix across the fringe plane turns
ut to be

Ĵout�	,	� = �� + 
 + 2Re	�e2iK	
�P̂, �16�

nd the normalized Stokes parameters, as well as the de-
ree of polarization, at any point of the fringe plane are
he same as those present at the Young holes.

The parameters �, 
, and � cannot take arbitrary val-
es because of the constraints imposed on the elements of
olarization matrices. In particular, since the diagonal el-
ments of Ĵ11 and Ĵ22 must be real and positive, � and 

ust be real and positive, too. Furthermore, the modulus

f � is bounded by the Schwartz inequality. In fact, if we
onsider a typical element, say J�k

12�� ,k=x ,y� of the matrix
ˆ

12, the Schwartz inequality requires �J�k
12�2�J��

11Jkk
22 so

hat, as can be easily verified, it must be that ���2��
. It
hould be noted that, because of such constraints, the
uantity in parentheses in Eq. (16) is always nonnega-
ive.

The intensity across the fringe plane is obtained by tak-
ng the trace of Ĵout�	 ,	� and turns out to be

Iout�	� = �� + 
 + 2Re	�e2iK	
��a + b�, �17�

hich is independent of the polarization state of the field
t the pinholes and coincides, up to the proportionality
actor �a+b�, with the intensity distribution that would
ave been obtained from the interference of two scalar
elds having intensities � and 
, respectively, and mutual
ntensity �.

In conclusion, the conditions we have found for the po-
arization invariance across the fringe pattern are: Ĵ11

�P̂, Ĵ22=
ĴP, and Ĵ12=�P̂. This means that the 4�4
orrelation matrix representing the two-point source at
he pinholes consists of four blocks proportional to one an-
ther and therefore can be written as

�̂ = �̂S � P̂, �18�

here

�̂S = � � �

�* 
� , �19�

nd � denotes the tensor, or Kronecker, product [15].
hen a matrix �̂ can be written in the form of Eq. (18), it

s said to be factorizable. From the above constraints
bout the values of the elements of �̂S it follows that the
atter is also a Hermitian positive semidefinite matrix.
he subscript “S” stands for “scalar” because the matrix

ˆS is just the 2�2 correlation matrix that would have
een obtained in the study of the modal structure of a sca-
ar two-point source, following an approach similar to
hat of [3,7].

A direct consequence of the condition in Eq. (18) is that
ny partially coherent electromagnetic field whose BCP
atrix can be written in the form [11]

Ĵ�r1,r2� = JS�r1,r2�P̂, �20�

ith JS being a scalar mutual intensity function, exhibits
olarization invariance across the output plane when it
eeds a Young interferometer, wherever the two pinholes
re located. We then have �=JS�p1 ,p1�, 
=JS�p2 ,p2�,
nd �=JS�p1 ,p2�, where p1 and p2 are the position vec-
ors of the holes.

From Eq. (18) it is seen that the polarization properties
f such sources are somewhat decoupled from their coher-
nce properties. Such a decoupling will be made more evi-
ent when considering the modal expansion of sources of
his kind.

. MODAL EXPANSION OF FACTORIZABLE
ˆ MATRICES
he evaluation of the modal structure of the two-point
ource is particularly simple in those cases where the cor-
esponding �̂ matrix is expressible as the Kronecker prod-
ct of two 2�2 matrices, i.e., when

�̂ = �̂S � P̂ = � � �

�* 
� � �a c

c* b� , �21�

here �̂S and P̂ are Hermitian and positive semidefinite.
When this happens, in fact, eigenvalues and eigenvec-

ors of �̂ are given by suitable products of the correspond-
ng quantities of the two smaller matrices, and can al-
ays be calculated by solving two second-order secular
quations. Nevertheless, as we saw above, significant
wo-point sources belong to the present class.
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. Modal Structure of the Two Submatrices
et us consider first eigenvalues and modes of the matrix

ˆS. As stated above, they determine the modal structure of
s calar two-point source. The eigenvalues are easily

valuated as

�1
S = 1

2 ��� + 
� + ��� − 
�2 + 4���2,

�2
S = 1

2 ��� + 
� − ��� − 
�2 + 4���2, �22�

hich the following eigenvectors correspond to:

�1
S = NS�Sei�S

1 �, �2
S = NS� ei�S

− S
�; �23�

here �S is the argument of the complex number �, while

S =
�� − 
� + ��� − 
�2 + 4���2

2���
, �24�

epresents the unbalancing between the field amplitudes
f the modes at the two points, and

NS =
1

�1 + S
2

. �25�

s a normalization factor.
According to the modal theory of coherence, any scalar

wo-point source can be thought of as the incoherent su-
erposition of the above two modes, which represent per-
ectly coherent field distributions at the two points. The
mplitudes of the modes at the two holes are just the el-
ments of the vectors in Eq. (23), while their powers are
iven by the corresponding eigenvalues. With reference to
Young interferometer scheme, it is also true that any in-

erference pattern can be considered as produced from the
uperposition of two mutually uncorrelated patterns,
ach of them obtained from one of the modes.

We stress that such two patterns do not present, in gen-
ral, unitary visibility, because of the presence of the un-
alancing factor S, which depends on the elements of �̂S,
nd is unitary only when �=
. However, a general char-
cteristic of such modes, which follows from their orthogo-
ality, is that they always produce two interference pat-
erns that are in phase opposition at the output plane of
he interferometer, as can be also directly verified from
q. (23). In particular, we may write

I1,2
S �	� = �1,2

S NS
2�1 + S

2 ± 2S cos�2K	 + �S�, �26�

here the � (�) sign has to be chosen for the first (sec-
nd) mode.

Analogous considerations hold, of course, for P̂, and the
xpressions for �i

P and �i
P �i=1,2� exactly correspond to

hose in Eqs. (22) and (23). In this case, however, we are
ealing with the modal structure of a polarization matrix
f a field at a fixed point, and the modes now represent
he Jones vectors of two perfectly polarized fields whose
uperposition gives rise to the field at that point. The ei-
envalues give the power contribution of the two modes,
hile the orthogonality between the modes means exactly

hat their polarization states are mutually orthogonal.
. Modal Structure of the Composite Matrix
igenvalues and eigenvectors of the composite matrix are
iven by [15]

�1 = �1
S�1

P, �2 = �1
S�2

P,

�3 = �2
S�1

P, �4 = �2
S�2

P; �27�

�1 = �1
S

� �1
P, �2 = �1

S
� �2

P,

�3 = �2
S

� �1
P, �4 = �2

S
� �2

P. �28�

Some important consequences arise from such a modal
tructure. First, for each of the modes the electric fields at
he two points have the same polarization state, coinci-
ent with the polarization state of one of the eigenvectors
f P̂. More precisely, the modes �1 and �3 are polarized
s �1

P while �2 and �4 are polarized as �2
P, which is or-

hogonal to the former. Second, the phase difference be-
ween the fields at the two holes is �S for the first two
odes, as it happens for �1

S, while it is �S+� for the last
wo, as for �2

S. This means that the interference patterns
roduced across the output plane of the Young interferom-
ter by �1 and �2 are exactly superimposed, being pro-
ortional to the intensity profile I1

S [see Eq. (26)]. The
ame happens to the fringes produced by �3 and �4, but
he pertinent intensity distribution is proportional to I2

S,
hich is laterally shifted by half a period with respect to

1
S. Typical intensity distributions of the fringe pattern
roduced by the four modes are shown in Fig. 1 where, for
implicity, the phase �S has been set to zero.

The above considerations help one understand the be-
avior of the interference pattern as far as its polariza-
ion properties are concerned. In fact, since the modes are
uperimposed incoherently, the whole polarization matrix
t the coordinate 	 can be written as the sum of the po-
arization matrices pertinent to each of the modes. In par-
icular, some of the features, such as the total intensity
nd the degree of polarization across the interference pat-
ern, can be directly deduced from the equations derived
bove. The total intensity is evaluated by summing all
ontributions and using Eqs. (22)–(27), while the polariza-
ion degree across the fringe pattern, Pout�	�, is easily de-
uced if one considers that the modes �1 and �3 have or-
hogonal polarization with respect to �2 and �4. This
eans that Pout�	� can be evaluated as

ig. 1. Typical intensity distributions produced across the out-
ut plane by the four modes. The phase �S has been set to zero
nd P=� /K denotes the fringe period.
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Pout�	� =
��I1�	� + I3�	� − �I2�	� + I4�	��

I1�	� + I2�	� + I3�	� + I4�	�
=

��1
P − �2

P�

�1
P + �2

P ,

�29�

hich is independent of the spatial coordinate and, as is
equired, equals that at the pinholes. We want to remark
hat the key features of the modal structure that are re-
ponsible for such behavior are the orthogonality of the
olarization states of the modes and the fact that �1 /�2
�3 /�4, so that at any point of the fringe pattern the ratio
etween the powers of the component polarized as �1

P and
hat polarized in the orthogonal way is constant.

In Section 5 we shall apply the results presented here,
dopting simplyfing assumptions about the parameters of
he source, so that simpler explicit expressions for modes
nd eigenvalues will be obtained.

. EXAMPLE
rom the results of Section 3, we know that a two-point
ource described by the matrix in Eq. (30) produces radia-
ion with uniform polarization across the output plane of
Young interferometer. It may be interesting to analyze

n some detail such behavior in terms of the coherent
ode decomposition of the source. This could be done
ithout any restrictions on the parameters of the two-
oint source but, to simplify the expressions to come and
he pertinent figures, we take �=
, which means that the
elds at the the two Young pinholes carry the same power.
urthermore, we take � and c as real nonnegative quan-

ities. By the way, such conditions can be always be ful-
lled in practice, provided that a suitable absorbing ele-
ent and suitable retarders are placed in front of one of

he two holes. Without any loss of generality, we further
ssume a�b.
The matrix in Eq. (21) can then be written as

�̂ = ��1 �

� 1� � �a c

c b� , �30�

here � is the scalar degree of coherence between the
oles, defined as � /��
. We may immediately evaluate
he intensity of the fields emerging from each of the pin-
oles, i.e.,

Iph = ��a + b�, �31�

nd the polarization degree at the pinholes, that is,

Pph =
��a − b�2 + 4c2

�a + b�
. �32�

Eigenvalues and eigenvectors of �̂ are readily obtained
rom Eqs. (22)–(28) as

�1 = ��1 + ����a + b� + ��a − b�2 + 4c2,

�2 = ��1 + ����a + b� − ��a − b�2 + 4c2,

�3 = ��1 − ����a + b� + ��a − b�2 + 4c2,

� 2 2
�4 = ��1 − ����a + b� − �a − b� + 4c , �33�
�1 =
N

�2�
P

1

P

1
�, �2 =

N

�2�
1

− P

1

− P

� ,

�3 =
N

�2�
P

1

− P

− 1
�, �4 =

N

�2�
1

− P

− 1

P

�; �34�

espectively, where

P =
�a − b� + ��a − b�2 + 4c2

2c
, �35�

N =
1

�1 + P
2

. �36�

As was expected, the polarization states of the modes
ollow the ones of the polarization matrix P̂ and are there-
ore independent of �, i.e., of the correlation existing be-
ween the two Young pinholes. In particular, since c has
een taken as real, the polarizations of the modes are lin-
ar. The latter are sketched in Fig. 2, where the arrow di-
ections highlight the phase relations existing for each
ode between the fields at the pinholes.
It is interesting to note that the polarization angle �

epends only on the quantity �a−b� /c. More precisely,
rom Eqs. (34) and (35) we have

� = tan−1� 1

P
� = tan−1� �a − b�

2c
+�1 + �a − b

2c �2�−1

,

�37�

o that it tends to 0 when �a−b� /c→� (and this happens
hen a�b or when c→0) while it goes to � /4 when a
b (see Fig. 3).
As far as the eigenvalues are concerned, their values

epend also on �. A typical behavior of the four eigenval-
es as functions of � is shown in Fig. 4.
The two limiting cases of �→1 and �→0 are of particu-

ar interest and are worth being considered in some de-
ail, starting from the first one.

If ��1, the corresponding components of the electric
eld at the two Young pinholes are perfectly correlated

ig. 2. Polarization of the modes at the two Young pinholes for
he source of Section 5.
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nd we expect fringes with maximum visibility across the
utput plane. In such a limit, from Eq. (33), two of the ei-
envalues (namely, �3 and �4) vanish, which means that
nly two modes (namely, �1 and �2) are required, at
ost, to describe the BCP of the field emerging from the

inholes. One mode is sufficient if �2 vanishes, too, and
his happens if c2=a, i.e., when the incident field is fully
olarized.
On the observation plane both the modes give rise to an

ntensity distribution of the form Ii�	���i cos2�K	+�S/2�
�i=1,2�, and this explains why the visibility of the over-

ll pattern turns out to be unitary. Moreover, since the
wo modes are linearly polarized along mutually orthogo-
al directions, the degree of polarization as a function of 	
an be evaluated at once as

Pout�	� =
I1�	� − I2�	�

I1�	� + I2�	�
=

�1 − �2

�1 + �2
=

��a − b�2 + 4c2

�a + b�
, �38�

hich is uniform across the plane and equal to that at the
inholes, as was expected.
In the opposite limit ���0� there is no correlation at all

etween the field components at the two pinholes, and we
xpect that the problem of the mode determination re-
uces to two independent problems, one for each of the
inholes. In fact, if �=0, we see from Eq. (33) that �1
�3 and �2=�4. As a result of such degeneracies, different
odes can be chosen as linear combinations of �1 and �3

and of �2 and �4). In particular, one can choose

Fig. 3. Polarization direction of �1 for the source of Section 5.

ig. 4. Four eigenvalues as functions of the scalar degree of co-
erence between the fields at the Young pinholes for the source of
ection 5.
�1� =
�1 + �3

�2
= N�

P

1

0

0
� ,

�2� =
�2 + �4

�2
= N�

1

− P

0

0
� ,

�3� =
�1 − �3

�2
= N�

0

0

P

1
� ,

�4� =
�2 − �4

�2
= N�

0

0

1

− P

� . �39�

The problem of the mode determination indeed reduces
o two independent problems, and for each of the modes,
eld is present only on one of the two pinholes (see Fig. 5).
ince the polarization matrices of the fields at the two
oles are identical, their eigenvalues and modes are ex-
ctly the same. In particular, even when the incident
eam is fully polarized, there cannot be fewer than two
degenerate) modes in the expansion.

No fringes are observed across the output plane of the
nterferometer because no one of the modes gives rise to
nterference fringes, so that the intensity visibility of the
verall pattern is zero. As far as the polarization proper-
ies of the output field are concerned, we simply note that
he latter can be thought of as consisting of two mutually
ncorrelated contributions having orthogonal polariza-
ions and powers proportional to �1 and �2, respectively,
o that exactly the same result as in Eq. (38) is obtained.

. CONCLUSIONS
hen an electromagnetic partially coherent light source

s used as the input of a Young interferometer, the polar-
zation properties of the field across the interference

ig. 5. Polarization of the modes at the two Young pinholes for
he case of the source of Section 5 with ��0.
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attern are generally different from those of the field im-
inging on the Young mask, even when the local polariza-
ion properties of the input field are identical at the two
oles. In the present paper, the conditions assuring that
he polarization properties of the input field are preserved
cross the output plane have been derived within the
ramework of the paraxial approximation. Such a require-
ent has been shown to affect the form of the 4�4 corre-

ation matrix comprising the second-order correlations be-
ween all the possible pairs of transverse components of
he electric field at the two pinholes. It turns out that
uch matrix has to be expessible as the tensor product of
wo submatrices to account for the polarization of the
ource and its coherence properties, respectively.

The structure of the interference pattern has then been
nterpreted in terms of the modes of the partially coher-
nt electromagnetic source representing the field emerg-
ng from the Young holes. All the coherence–polarization
eatures of the interference pattern of a Young interferom-
ter, in fact, can be deduced from a superposition scheme
nvolving four mutually uncorrelated, perfectly polarized,
nd correlated electromagnetic fields. In the case of polar-
zation invariance, it has been shown that such modes, to-
ether with the correspoding eigenvalues, are evaluated
n closed analytical form by solving the secular problems
or two 2�2 Hermitian matrices.

Results presented here find application in the study of
he two-beam interference of vector fields but, more in
eneral, they could give a deeper insight into the relation-
hip between the polarization of an electromagnetic light
ource and its spatial-coherence properties.
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