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Comment on ‘‘Do evanescent waves really exist in free space?’’
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Abstract

In a recent paper [A.B. Katrich, Opt. Commun. 255 (2005) 169], Katrich has claimed that in a 2D free space evanescent waves do not
exist because they are not exact solutions of the free space wave equation. We show that his conclusions are not valid, and that evanes-
cent can indeed exist in free space.
� 2006 Published by Elsevier B.V.
Katrich [1] has claimed that evanescent waves are not
solutions of the homogeneous free space Helmholtz
Rayleigh–Sommerfeld diffraction integrals give only
approximate solutions. These statements are in contradic-
tion to what is found from near-field optics and frustrated
total reflection. Also, evanescent waves are known to play a
key role in diffraction from cylinders, gratings, half-planes,
etc.

The main error in Katrich’s argument is in Eq. (1), where
he claims that any field within a two-dimensional free half-
space can be expanded into Bessel functions of the first
kind, Jn. It is well known that these functions (unlike the
Bessel function of the second kind Yn, or the Hankel func-
tions H ð1;2Þn ) do not contain any evanescent components, as
Katrich proves in the paper. Therefore, he has ignored the
evanescent components straightaway, and it is therefore
not surprising that he can then carry on to show that the
evanescent components vanish. The functions Jn are not a
complete set for a source-less 2D half-infinite space. Of
course, an appropriate basis in this case is that of for-
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ward-propagating plane waves exp{ik[px + (1 � p2)1/2z]},
where the positive imaginary value of the square root must
be chosen when p2 > 1. Clearly, these waves are well-
behaved solutions of the Helmholtz equation for all z P 0
and for any real p. While they carry infinite power, they
can be combined to give fields of finite power.

In the first column of the second page, the author states
that the distribution at the source plane must satisfy the
free space Helmholtz equation. This is a confused state-
ment and the source of other errors in the paper. It does
not make sense to say that a boundary condition satisfies
the Helmholtz equation, as this equation involves a second
derivative in z. We would need to know both the field at the
boundary and its second normal derivative to test if they
are consistent with the Helmholtz equation.

On page 2, line 53, Katrich states ‘‘If evanescent waves
do not contribute to the far-field then they must be trans-
ferred to propagating waves near the source’’. Actually
the evanescent waves propagate sideways, so they do con-
tribute to the far-field, but only very close to the boundary
plane. As the radius r becomes large, the contribution at
any angle h decreases. They are not ‘‘transferred to propa-
gating waves near the source’’.

On page 2, line 66, Katrich [1] comments on the
‘‘strange results’’ of Zeng [2], that the angle of divergence
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for a small planar source is limited to 65�. This result is not
really strange, and is caused by two factors:

1. If width is defined as the cylindrical distance from the
axis for the intensity to fall to one half for a particular
fixed axial distance z, then even a uniform spherical
wave has a limited divergence because of the inverse
square law.

2. The assumption of a planar source that tends to zero in
width is not the same as a point source, as a planar
source behaves as a dipole source. This effect was first
described by Darwin in the early 1900s [3] in the connec-
tion of X ray diffraction. See also [4].

On page 2, line 84, Katrich [1] states ‘‘Conventionally it
is assumed that in the source plane any field distribution
can be specified’’. This is a valid criticism of the Kirchhoff
boundary conditions, which are known to be not self-con-
sistent. There are therefore issues regarding Kirchhoff
boundary conditions (which are an approximation) when
studying problems of diffraction by apertures. However,
the first Rayleigh–Sommerfeld diffraction formula (which
should really be called a ‘‘propagation’’ formula rather
than a ‘‘diffraction’’ one) is an exact formula for scalar
wave propagation in free space, where given the field at a
planar boundary (and the knowledge that there are no
sources to the right of the boundary), one can unambigu-
ously determine the field elsewhere to the right of the
boundary exactly. Therefore, one can specify the boundary
field distribution arbitrarily for the sake of wave propaga-
tion. Where this boundary field comes from and how we
found it is a separate issue.

There exist also many cases, e.g. diffraction by a small
aperture or by a grating, or scattering by a cylinder or
half-plane, where there are evanescent components, and
these are predicted by rigorous diffraction theory. The case
of diffraction of a plane wave by a cylinder is one of the
best known and simple examples where an expansion in
terms of Bessel functions (both of the first and second
kinds, in a combination that satisfies Sommerfeld’s radia-
tion condition) is used. In such a case the diffracted field,
as well as its spectrum across any plane parallel to the axis
of the cylinder, can be found rigorously, in analytical
terms, and the presence of evanescent waves is undeniable.
In the case in which the cylinder radius is much smaller
than the wavelength, in particular, the diffracted field is
proportional to the outgoing Hankel function of zero order
and then its plane-wave spectrum turns out to be propor-
tional to expðikd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
, where d is the distance

of the plane from the cylinder axis, and q is the normalized
spatial frequency, which takes values from 1 to �1.

Katrich also criticizes the results of Porras et al. [5],
presumably on the grounds that they found a phenome-
non in which Gaussian light pulses propagate at a group
velocity greater than the speed of light, attributing this
‘‘strange’’ result to the use of evanescent waves. Actually,
superluminal phenomena like this are not unusual. In
fact, they occur for any pulsed field that is composed of
plane waves traveling in more than one direction. They
do not violate causality or any other physical principle.
This effect is particularly evident in the propagation of
the so-called X-waves, which propagate faster than c

along the mean propagation axis. Of course, such pulses
cannot carry information at a speed faster than c. Most
of all, this effect has nothing to do with evanescent waves,
but rather with the scissors effect of different homoge-
neous wave components going in different directions,
which give intensity distributions that ‘‘move’’ faster than
light. X-waves are composed of homogeneous waves
exclusively.

In conclusion, the mathematical arguments presented in
Ref. [1] that prove the inexistence of evanescent waves are
flawed. The existence of these waves in free space is
strongly supported both theoretically and experimentally.
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