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Abstract: A scheme for computing rotationally-symmetric nonparaxial
monochromatic scalar fields is proposed, based on a new orthonormal basis
of solutions of the Helmholtz equation given by combinations of spherical
waves focused at imaginary points. These basis fields are found through a
mapping of the angular spectra of the multipolar basis over the sphere of
directions. The convergence of the basis can be optimized by an appropriate
choice of the location of the imaginary focus. The new scheme is tested
for the case of converging spherical waves of different numerical apertures,
with and without aberrations.
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1. Introduction

The description of nonparaxial monochromatic scalar fields requires the use of efficient com-
putational schemes. Customarily, the field is computed by expressing it as a superposition of
closed-form solutions of the Helmholtz equation, like plane waves, spherical waves, multipoles,
Bessel beams, etc. These superposition schemes often require the evaluation of oscillatory in-
tegrals or slowly-converging series for the computation of the field at each point. For special
cases, there are bases that are particularly convenient. For example, in the paraxial limit, one
can expand a field in terms of (Hermite or Laguerre) Gaussian beams. In the highly nonparaxial
case, on the other hand, the multipolar basis gives rapidly-convergent solutions. The goal of this
paper is to develop a new scheme that is efficient between these two limiting situations.

The scheme proposed here is valid for free fields with rotational symmetry, and is based on
a different class of closed-form solutions of the Helmholtz equation. These solutions are built
in terms of what we call here complex focus fields (CFF’s) [1, 2, 3, 4, 5, 6], which correspond
to spherical waves focused at a complex point. The CFF’s have rotational symmetry around the
direction of the imaginary part of their focal position and reduce to paraxial Gaussian beams
when this imaginary part is much larger than the wavelength. The elements of the new basis are
the result of transforming the angular spectra of the multipolar basis according to a simple geo-
metrical mapping of the sphere of directions. This mapping is chosen such that the monopole
transforms into a CFF. The expansion coefficients for a general field are calculated through a
simple integral involving the field’s angular spectrum. The magnitude of the imaginary focus of
the CFF is then a free parameter that can be chosen to optimize the convergence of the expan-
sion. In particular, in the limit when this parameter is large, one obtains an orthonormal basis
for expanding paraxial beams, which can be written in terms of Legendre polynomials with
Gaussian arguments. The resulting paraxial scheme is reminiscent of the one proposed by Wen
and Breazeale [7, 8], where a paraxial acoustical beam with rotational symmetry is expanded in
terms of coaxial Gaussian beams of different spot sizes, whose coefficients are obtained through
a numerical optimization procedure. A similar expansion was proposed by Li [9] for describing
a paraxial flat-top optical beam. For fields that deviate significantly from the paraxial regime, a
smaller value can be chosen for the above-mentioned parameter, so that the new scheme gives
rapidly-convergent results. In fact, in the limit of highly nonparaxial fields, this parameter can
be set to zero, so that the new basis reduces to the multipolar one.

2. Real and complex multipoles

2.1. Debye representation of scalar fields

A general monochromatic scalar field in three dimensions with no evanescent components can
be written as a sum of propagating plane waves of the form

U(r) =
∫

4π
A(u)exp(iku · r)dΩ, (1)

where k is the wave number, A(·) is the angular spectrum of the wave field, and the integral is
over the sphere of directions of the unit vector u. The angular spectrum, which is a complex
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distribution over the unit sphere of directions, fully characterizes the wave field. For simplicity,
we set k = 1 in all subsequent formulas, i.e., all distances are in units of reduced wavelengths.

2.2. Multipolar fields

The spherical harmonics of order l and index m are defined by [10]

Yl,±m(u) = (±1)m

√
2l +1

4π
(l −m)!
(l +m)!

exp(±imφ)P(m)
l (cosθ ), (2)

where θ and φ are the polar and azimuthal angle, respectively, and P (m)
l (·) is the associated

Legendre function with integer indices l and m [10]. The spherical harmonics constitute a set
of orthonormal functions across the unit sphere of directions, since

∫
4π

Yl′,m′(u)Y ∗
l,m(u)dΩ = δl,l′ δm,m′ . (3)

The angular spectrum of any free monochromatic wave field A(u) can then be written as

A(u) =
∞

∑
l=0

+l

∑
m=−l

al,mYl,m(u), (4)

where al,m is found through the inner product

al,m =
∫

4π
Y ∗

l,m(u)A(u)dΩ. (5)

It turns out that the field corresponding to an angular spectrum Yl,m(u) is the scalar multipole

Πl,m(r) =
∫

4π
Yl,m(u) exp(iu · r)dΩ = 4π il jl(r)Yl,m

(r
r

)
, (6)

where r = |r| and jl(·) denotes the lth-order spherical Bessel function [10]. In particular, a
perfect spherical wave (or monopole) is characterized by the following angular spectrum and
field distributions:

A(u) = Y0,0(u) =
1√
4π

, Π0,0(r) =
√

4π
sin r

r
. (7)

2.3. Complex focus fields

As can be seen from Eq. (1), shifting the spatial coordinate by r 0 is equivalent to multiplying
the angular spectrum by a phase factor, i.e.,

U(r) →U(r− r0) ⇒ A(u) → A(u) exp(−iu · r0). (8)

This transformation is analogous to the well known shift-phase property in Fourier analysis.
Let us consider the spherical wave in Eq. (7). From Eq. (8), the spectrum of a spherical wave
focused at a point r0 is proportional to exp(−iu ·r0) and the corresponding field is proportional
to sin |r− r0|/|r− r0|.

Suppose now that the focus is at the imaginary point r0 = (0,0, iq), where q≥ 0. Accordingly,
the new angular spectrum, say A0,0(u;q), is

A0,0(u;q) =
(

q
2π sinh2q

)1/2

exp(q cosθ ), (9)
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where we used uz = cosθ , and a constant factor was introduced in order for the following
normalization condition to be fulfilled:∫

4π
|Y0,0(u)|2 dΩ =

∫
4π

|A0,0(u;q)|2 dΩ = 1. (10)

The corresponding field, say U0,0(r;q) is given by

U0,0(r;q) =
(

8π q
sinh2q

)1/2 sin
√

x2 + y2 +(z− iq)2√
x2 + y2 +(z− iq)2

. (11)

These fields are the CFF’s mentioned in the introduction. Note that the choice of branch for
the complex square root in Eq. (11) is not important, as the Taylor expansion around r = 0 of
(sin r)/r contains only even powers. For q > 0, the spherical symmetry is replaced by rotational
symmetry around the z-axis, which becomes the main direction of propagation. In fact, when
q � 1, A0,0(u) becomes a Gaussian in the polar angle, i.e.,

A0,0(u;q) ≈
( q

2π

)1/2
exp

(
−q

θ 2

2

)
, (12)

and the field U0,0 becomes a paraxial Gaussian beam, i.e.,

U0,0(r;q) ≈
√

8π q
exp(iz)
z− iq

exp
[
i

x2 + y2

2(z− iq)

]
. (13)

Higher-order multipoles can also be displaced to the same imaginary location, giving them a
directionality that is controlled by q. However, this operation of displacement to an imaginary
point destroys the orthogonality of the basis. In the next section we propose an alternative way
to transform the multipolar basis such that orthogonality is preserved and that the lowest-order
element is the CFF in Eq. (11).

3. Mapping of the unit sphere

The basic idea of this work is to use a geometrical mapping of the unit sphere onto itself
in order to transform the spherical harmonics Yl,m(u) onto a new orthonormal set of angular
spectra, say Al,m(u;q). Mappings on the sphere are not unusual in physics. Think, for example,
of the Bargmann mapping of velocity directions associated with a relativistic boost [11], or the
mapping of ray directions between the two foci of an ellipsoidal reflector.

Consider two spherical coordinate reference frames, say Ω = (θ ,φ) and Ω ′ = (θ ′,φ ′). The
mapping is defined by the following pair of equations:

θ ′ = Θ̄(θ ,φ), φ ′ = Φ̄(θ ,φ). (14)

Let us assume that the φ -dependence is preserved, so that Φ̄(φ) = φ and the function Θ̄(·)
depends only on θ . This function can be found through an “energy conservation” approach.
In particular, we require that Θ̄ maps a uniform distribution onto the distribution of Eq. (9).
For this purpose, consider two infinitesimal solid angles in the two spaces, say dΩ ′ and dΩ,
respectively, and let the “energy”, i.e., the square modulus of the respective angular spectra,
contained within them be equal, that is

|Y0,0(θ ′)|2 dΩ′ = |A0,0(θ )|2 dΩ. (15)

By using Eqs. (7) and (9), Eq. (15) leads to the following differential equation:

sinθ ′ dθ ′ =
2q

sinh2q
exp(2q cosθ ) sinθ dθ . (16)
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Equation (16) can be easily solved. (Note that the corresponding equation for the two-
dimensional case has no simple solution.) We must also impose, however, the condition that
θ ′ = 0 is mapped onto θ = 0. This yields an expression for θ ′ = Θ̄ given by

cos Θ̄(θ ) =
exp(2qcosθ )− cosh2q

sinh2q
. (17)

The effect of this geometrical transformation is illustrated in Fig. 1, which shows meridional
sections of the sphere of directions. The squared modulus of A 0,0(u;q), as a function of θ ,
corresponds to the length of the blue radial lines. For q = 0, |A 0,0(u;q)|2 is uniform, and the
radial lines are equally spaced. As q increases, the radial lines drift towards the positive z-
direction, where |A0,0(u;q)|2 peaks.

z

x
q=0

z

x
q=1

Fig. 1. Mapping of the angular spectra over a meridional section of the sphere of directions.
The lengths of the blue radial line segments are proportional to |A0,0(u;q)|2. For increasing
q, these radial lines bunch up around the positive z axis.

We now introduce the complete basis of spectra A l,m(u;q) as the result of applying the
mapping defined above to the spherical harmonics Yl,m(u) of Eq. (2), i.e.,

Al,m(u;q) =

√
q(2l +1)(l−m)!
2π sinh2q(l +m)!

exp(q cosθ )P(m)
l [cos Θ̄(θ )] exp(imφ). (18)

Figure 2 shows Al,0, for l = 0,1,2,3,4, as a function of θ/π , for q running from 0 to 4. Because
the mapping was defined through an energy-conservation approach, it preserves the inner prod-
uct between two arbitrary angular spectra. Therefore, the functions A l,m(u;q) are orthonormal
on the unit sphere for any q. Furthermore, in the limit q → 0, they reduce to Y l,m(u). The oppo-
site limit is discussed in the next section.

4. Paraxial limit: Legendre-Gauss basis

Since for large values of q we expect the angular spectrum to be strongly localized around θ ≈
0, we can use the approximation cos Θ̄(θ ) ≈ −1 + 2η2 with η = exp(−qθ 2/2). The angular
spectrum then reduces to

Al,m(u;q) ≈
√

q(2l +1)(l−m)!
2π(l +m)!

η P(m)
l (−1+2η2) exp(imφ), (19)
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Fig. 2. Plots of Al,0, for l = 0,1,2,3,4, as functions of θ/π , for q running from 0 to 4.

which can be written as
Al,m(u;q) ≈ Bl,m(

√
qθ ,φ), (20)

where the orthonormal set of functions Bl,m(·, ·) are referred to here as the Legendre-Gauss
basis:

Bl,m(τ,φ) =

√
(2l +1)(l−m)!

2π (l +m)!
exp(−τ2/2)P(m)

l [2exp(−τ2)−1] exp(imφ). (21)

For m = 0, P(m)
l (·) reduces to a polynomial of degree l. Thus Bl,0 is a finite sum of Gaussian

functions, so that the angular spectrum in Eq. (20) gives rise to a paraxial field composed of a
discrete set of coaxial fundamental paraxial Gaussian beams having different spot-sizes.

Figure 3 shows plots of Bl,0’s, for l = 0,1,2,3,4, as functions of τ . Notice that, unlike the
Laguerre-Gaussian functions whose support is proportional to 2 l + 1, the Legendre-Gaussian
functions have roughly a fixed support. They are therefore not a convenient basis for expanding
functions with larger supports. To show this, consider the orthogonal expansion of the function
circ(τ/a) in terms of Legendre-Gaussian functions. This function, which is independent of
φ , takes the value 1 for τ < a and 0 otherwise. Because of its rotational symmetry, only the
Legendre-Gaussian functions Bl,0 are needed in the expansion. Due to the orthonormality of
the basis, the rms error, say ε , caused by the truncation of the series can be calculated in terms
of the expansion coefficients, say cl , in the following form:

ε =

√√√√1− 1
N2

lmax

∑
l=0

|cl|2, (22)

where lmax denotes the truncation order and N 2 = π a2 equals the total energy of the circ func-
tion. Figure 4 shows ε as a function of a for different values of the truncation order l max. Notice
that the value of a that minimizes the error for a fixed truncation order is roughly 1.3, indepen-
dently of lmax. Suppose now that we have a field whose angular spectrum is a circ function of
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Fig. 3. Plots of Bl,0’s, as functions of τ , for several values of l.

0.5 1 1.5 2
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lmax=18
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Fig. 4. Behavior of the rms error ε , as a function of a, for different truncation orders lmax.

width θmax. From Eq. (20) and Fig. 4 we easily see that, in order to optimize the convergence,
q must be chosen such that θmax

√
q ≈ 1.3, so that qopt ≈

√
3/θ 2

max. It is worth noting that even
the minimized errors in Fig. 4 are relatively large, and decay slowly with increasing l max. This
is due to the discontinuity of the circ function. Other bases, like the Hermite-Gaussian and the
Laguerre-Gaussian ones, also converge slowly when there are discontinuities. [12, 13]

5. Application to the computation of focused axis-symmetric fields

In the previous section we proved that any paraxial field with axial symmetry can be expressed
in terms of a superposition of fundamental Gaussian beams. The aim of this section is to extend
this superposition scheme to the nonparaxial regime.
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5.1. Orthonormal expansion

Let us start by investigating whether the field distributions U l,m(r;q), whose angular spectra are
the functions Al,m(u;q), can be evaluated in closed form. From Eq. (1) these fields are given by

Ul,m(r;q) =
∫

4π
Al,m(u;q) exp(iu · r)dΩ. (23)

The evaluation of these integrals is not trivial except for the case m = 0, when the angular
spectrum reduces to

Al,0(u;q) =

√
q(2l +1)
2π sinh2q

exp(q cosθ )Pl

[
exp(2q cosθ )− cosh2q

sinh2q

]
. (24)

Because Pl is a polynomial, the expression in Eq. (24) is a sum of terms proportional to
exp[(2n+1)q cosθ ]. Therefore, the corresponding fields take the form

Ul,0(r;q) =
√

2l +1
l

∑
n=0

Ml,n U0,0[r;(2n+1)q], (25)

where U0,0 is the closed form given in Eq. (11), and

Ml,n(q) = coef

[
Pl

(
μ − cosh2q

sinh2q

)
,μn

]
, (26)

with coef[Pol(μ),μn] denoting the coefficient of the nth power of μ in the polynomial expres-
sion Pol(μ).

In the case of axis-symmetric fields, the functions A l(θ ;q) = Al,0(u;q) constitute an ortho-
normal complete basis over the sphere. Any axis-symmetric field can then be calculated as a
superposition of Ul,0’s. For an angular spectrum A(θ ), the expansion coefficients c l’s are found
as

cl(q) = 2π
∫ π

0
Al(θ ;q)A(θ ) sinθ dθ . (27)

Rather than directly using Eq. (27), one can evaluate the coefficients by using the inverse map,
say θ = Θ(θ ′), on A(θ ). From Eq. (17) we find cosθ = cos[Θ(θ ′)], where

cos[Θ(θ ′)] =
1
2q

log
(
cosh2q+ cosθ ′ sinh2q

)
. (28)

From Eqs. (27) and (28), and taking Eq. (16) into account, we get

cl(q) =
√

(2l +1)π
∫ π

0
A (θ ′)Pl(θ ′)sinθ ′ dθ ′, (29)

where

A (θ ′) =
A[Θ(θ ′)]√

2q(cosθ ′ + coth2q)
. (30)

Once coefficients cl are found, the field can be written as

U(r) =
∞

∑
l=0

l

∑
n=0

√
(2l +1)π clMl,n U0,0[r;(2n+1)q]. (31)

Equation (31) gives the desired expansion of the field as a series involving simple closed form
expressions. The parameter q can be chosen to make the series as rapidly convergent as possible.
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5.2. Example: Debye focused fields

As a first example, consider the field produced by a spherical monochromatic wave emerging
from a circular aperture and converging towards the axial focal point. In the Debye approxi-
mation, where the exit pupil is considered to be infinitely far away, the field can be written as
U(r) =

∫
Ω0

exp(iu · r)dΩ, where Ω0 = {θ ∈ [0,θmax];φ ∈ [0,2π)}, and sinθmax is the ratio
between the radius of the aperture and the focal distance [14]. The angular spectrum is simply
given by A(u) = circ(θ/θmax).

As pointed out in the previous section, in order to improve the numerical convergence of
the expansion in Eq. (31), the parameter q must be chosen appropriately. We found that for the
paraxial case the truncation error is roughly minimized by choosing q = q opt =

√
3/θ 2

max. This
choice is also suitable for the nonparaxial case when θmax = π/4 as can be seen from Fig. 5,
which shows the behavior (on the right) of the truncation error ε (for l max ranging from 1 to
30) obtained by using the multipolar expansion q = 0 (orange dots), and the expansion in the
functions Al (black dots) for q ranging from 0 to 10. On the left, the green curve represents the

0.2 0.4 0.6 0.8 1
Θ
Π

0.2

0.4

0.6

0.8

1
A

(a)

q=2.8 5 10 15 20 25 30
lmax

-1

-0.8

-0.6

-0.4

-0.2

Log10 ε

(b)

Fig. 5. a) Angular spectrum A(θ ) (green curve), and inverse-mapped spectrum A (θ ) for
the specified q (black curve) and for q = qopt (blue curve). b) Truncation error ε , for lmax
ranging from 1 to 30, corresponding to the multipolar expansion (orange dots), and to the
expansion in the functions Al (black dots) for q running from 0 to 10.

angular spectrum A(θ ), the black curve is the inverse mapped spectrum A (θ ) for the specified
q, and the blue curve is A corresponding to q opt. Note that, as expected, the truncation error
ε is smallest when q ≈ qopt. Let us now explore the effect of changing the numerical aperture,
i.e., θmax. As can be seen from Fig. 6a, the inverse-mapped spectrum A (θ ) corresponding
to qopt (blue curve) is nearly independent of θmax. Therefore, the expansion coefficients cl

and the truncation error ε (shown as black dots in Figs. 6b and c, respectively) are, for this
choice of q, also roughly independent of the numerical aperture. For comparison, Figs. 6b,c
also show (as orange dots) the expansion coefficients and truncation error for the multipolar
basis (q = 0). Finally, Fig. 7 shows contour plots of the amplitude of the corresponding fields
for θmax ∈ [0,π/2]. These plots were evaluated by using q = qopt and lmax = 15.

As in the paraxial case, the truncation errors for both the multipolar basis and the new scheme
decay slowly with lmax due to the abrupt edge of the angular spectrum. In the next section, we
present an example with no discontinuities.

5.3. Example: Aberrated field

Let us consider now a smooth “flat-top” angular spectrum given by the expression

AFT(θ ) = exp{−[w2
0 (1− cosθ )]8}, (32)

for w0 = 2. This spectrum is shown as a green line in Fig. 8a. Also shown as a blue line is the
corresponding inversely-mapped spectrum for q = 3. To make this example more interesting,
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Fig. 6. a) Angular spectrum A(θ ) (green curve), and inverse-mapped spectrum A (θ ) for
q = qopt (blue curve), for θmax running from 0 to π/2. b) Expansion coefficients cl for the
multipolar basis (orange dots), and for the basis of functions Al (black dots). c) Truncation
error ε , for lmax ranging from 1 to 30, corresponding to the multipolar basis (orange dots),
and to the basis of functions Al (black dots).
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1

Fig. 7. Contour plots of the field amplitude (normalized to the focal amplitude) at the focal
region of an apertured spherical wave with half-angle θmax ∈ [0,π/2], calculated by using
Eq. (31) with q = qopt and lmax = 15.

we also include some amount of spherical aberration. The resulting angular spectrum is given
by

A(θ ) = AFT(θ ) exp[is(θ 4 −2 cosθ )], (33)

where the part of the phase proportional to θ 4 is responsible for the spherical aberration, and
the part proportional to cosθ is a shift of magnitude 2s of the origin in the z-direction (i.e. a
defocus) included to improve the convergence of the expansion. Figure 8b shows, for s = 15,
the truncation error as a function of lmax for the new basis with q = 3 (black dots), as well
as the corresponding error for the multipolar expansion (orange dots). Notice that, due to the
smooth edges of the spectrum, the error decays much faster than for the previous example.
Finally, Fig. 9 shows the field amplitudes at the focal region for several amounts of spherical

#68236 - $15.00 USD Received 6 March 2006; revised 11 July 2006; accepted 12 July 2006

(C) 2006 OSA 24 July 2006 / Vol. 14,  No. 15 / OPTICS EXPRESS  6903

http://www.opticsexpress.org/viewmedia.cfm?id=92259&seq=4
http://www.opticsexpress.org/viewmedia.cfm?id=92259&seq=5


0.2 0.4 0.6 0.8 1
θ/π

0.2

0.4

0.6

0.8

1

(a)

5 10 15 20 25 30
lmax

-3

-2.5

-2

-1.5

-1

-0.5

Log10 ε

(b)

Fig. 8. a) Magnitude of the angular spectrum A(θ ) in Eq. (32) (green curve), and inverse-
mapped spectrum A (θ ) for q = 3 (blue curve). b) Truncation error ε , for lmax ranging from
1 to 30, corresponding to the multipolar expansion (orange dots), and to the expansion in
the functions Al (black dots) for q = 3, for the aberrated angular spectrum in Eq. (33) with
s = 15.

aberration.
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Fig. 9. Contour plots of the field amplitude (normalized to the unaberrated focal amplitude)
at the focal region of the field corresponding to the angular spectrum in Eq. (33) for s
between 0 and 30, calculated by using Eq. (31) with q = 3 and lmax = 15.

6. Concluding remarks

By using a geometric mapping of the sphere of directions, a new orthonormal basis of free
nonparaxial monochromatic fields was introduced. This basis allows any axis-symmetric field
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to be computed in a numerically efficient fashion. The new scheme can be regarded as a bridge
between the multipolar expansion (suitable for highly nonparaxial fields) and a paraxial expan-
sion in terms of Gaussian beams. The convenience of this scheme is illustrated by the numerical
study in Sections 5.2 and 5.3. For comparison, the field corresponding to the angular spectrum
in Eq. (33) with s = 15 was also computed as an integral over θ of weighted Bessel beams,
yielding a plot that is indistinguishable from the one in Fig. 9 (and therefore not shown) but
requiring over two orders of magnitude more computation time. The generalization of this
scheme for the case of non-rotationally symmetric fields, both scalar and electromagnetic, will
be considered in the future.
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