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Joint spatial–directional localization features of
wave fields focused at a complex point
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A systematic study of the joint spatial–directional localization features of monochromatic wave fields focused
at a complex point is presented, on the basis of recently introduced measures of spatial and directional spread
for wide-angle wave fields. Such features are compared with those of a class of fields defined to achieve the
theoretical minimum product of these spread measures. It is found that the two classes of fields are remark-
ably similar. © 2006 Optical Society of America

OCIS codes: 350.5500, 260.2110.
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. INTRODUCTION
n Refs. 1 and 2 we found the lower bounds for the spatial
nd directional spread measures, as defined in Ref. 3, for
ree nonparaxial monochromatic scalar and vector fields.
hese lower bounds are achieved by families of fields, re-

erred to as minimum uncertainty fields (MUFs), which
ere obtained as eigenfunctions of a differential operator

ound through a variational approach. These fields do not
ave a simple closed-form expression, and must be com-
uted through a multipolar expansion.
The MUFs constitute a generalization of Gaussian

eams into the nonparaxial regime. It is interesting to re-
all, however, that there are other such generalizations. A
articularly elegant option corresponds to fields gener-
ted by point sources at a complex location. The connec-
ion between these fields and Gaussian beams was first
oticed by Kravtsov,4 Arnaud,5 Keller and Streifer,6 and
eschamps.7 These fields have been extensively studied
y Felsen and collaborators.8–11 In our context, however,
t is more convenient to consider instead spherical waves
ocused at a complex point (which can be thought of as the
uperposition of a coincident source–sink pair). This
odification removes the singular behavior found in this

ype of fields.10,12,13 The vectorial analogs of these fields
ere first proposed by Cullen and Yu,14 and studied ex-

ensively by Sheppard and Saghafi.15–17

Both the MUFs and the complex focus fields (CFFs)
ive a continuous transition between a Gaussian beam
nd a perfectly focused spherical wave. However, unlike
or the MUFs, the angular spectrum for the CFFs is given
y a remarkably simple expression, and the correspond-
ng measures of spread can be calculated in closed form. It
1084-7529/06/040933-7/$15.00 © 2
ill be shown here that these fields are indeed surpris-
ngly good approximations to the MUFs.

. MINIMUM UNCERTAINTY FIELDS
. Scalar Case
scalar free field can be expanded in terms of plane

aves in the form

U�r� =�
4�

A�u�exp�iu · r�d�, �1�

here u is a unit vector, A�u� is the angular spectrum of
he field, and the position vector r is in units of reduced
avelengths. For paraxial fields, A is significantly differ-
nt from zero only for u within a small solid angle around
specific direction, usually associated with that of the

ositive z axis. For nonparaxial fields, A can take any
alue for any u (even when the z component of u is nega-
ive). In this case, the usual measures of spatial and di-
ectional spread are no longer appropriate. For this rea-
on, suitable measures of spread for nonparaxial fields
ere proposed in Ref. 3. If we choose the main direction of
ropagation to be aligned with the z axis, the measure of
irectional spread is given by the expression

�� = arccos��4�

�A�u��2 cos �d�

�
4�

�A�u��2d� � , �2�

here � is the polar angle (that is, cos �=uz). The ratio of
he integrals in the argument of the arccosine has a
006 Optical Society of America
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imple interpretation: It is the distance from the origin to
he centroid of a spherical shell of unit radius centered at
he origin and with surface mass density proportional to
A�u��2. Therefore �� corresponds to the half-angle of the
one whose vertex is the origin and that contains the
ircle corresponding to the intersection of the unit sphere
nd a plane containing the centroid with normal in the z
irection (see Fig. 1 of Ref. 1). The measure of spatial
pread, on the other hand, is given by

�r = ��4�

A*�u�L2A�u�d�

�
4�

�A�u��2d� �
1/2

, �3�

here L2 is the square of the angular-momentum opera-
or, defined by

L2 = −
1

sin �

�

��
�sin �

�

��
� −

1

sin2 �

�2

��2 , �4�

ith � being the azimuthal angle. It is assumed here that
he origin is placed at the centroid of the field, i.e., at the
oint where the measure in Eq. (3) is minimal. Physical
nterpretations for this measure are given in Refs. 1 and
.
In Ref. 1 we searched for the fundamental lower

ounds of these measures of spread. Such lower bounds
re the extension into the nonparaxial regime of the well-
nown uncertainty relation. They are achieved by a fam-
ly of fields, referred to as MUFs, which are a nonparaxial
xtension of Gaussian beams. It was found through a
ariational treatment that the angular spectra of these
elds are the ground-state (i.e., lowest eigenvalue) eigen-
unctions of a second-order operator of the form

Qs =
2

w4 �1 − cos �� + L2, �5�

here the subscript s stands for scalar and w is a param-
ter that regulates the angular spread of the MUF.

Unlike for the case of two-dimensional (2D) MUFs, for
hich eigenfunctions of the operator in Eq. (5) can be ex-
ressed in terms of standard functions, the angular spec-
ra of the three-dimensional (3D) MUFs must be found
umerically. This was done in Ref. 1 through a decompo-
ition into spherical harmonics. In particular, it was
ound that scalar MUFs give a continuous transition be-
ween spherical waves (for w→�) and paraxial Gaussian
eams (for w→0).

. Vectorial Case
nalogous lower bounds apply for vector fields. Let us
onsider the electric field E of a monochromatic electro-
agnetic wave in free space. The angular spectrum of

his field must now be a vector, i.e.,
E�r� =�
4�

A�u�exp�iu · r�d�, �6�

here the transversality condition requires that A�u� ·u
0. The measures of spread are defined in analogous

orms:

�� = arccos��4�

�A�u��2 cos �d�

�
4�

�A�u��2d� � , �7�

�r = ��4�

A*�u� · L2A�u�d�

�
4�

�A�u��2d� �
1/2

. �8�

By using again a variational approach, it was found in
ef. 2 that the angular spectra of the vectorial MUFs are
lso the ground-state eigenfunctions of a very similar op-
rator:

Qv =
2

w4 �1 − cos �� + PuL2, �9�

here v now stands for vectorial, and Pu is the projection
atrix to the plane perpendicular to u, i.e., PuC=C
�C ·u�u=u� �C�u�. By using an expansion in vector
pherical harmonics, the eigenfunctions of this operator
ere found to have the following general form2:

Aw�u� = 	�U1�u� + 	U2�u�
Fw���, �10�

here � and 	 are constant coefficients, and Fw��� is a
calar function that is found through the series expan-
ion. It turns out that Fw��� becomes 1 for w→� and
ends to be proportional to exp	−�2 / �2w2�
 for small val-
es of w. Furthermore, vectors U1 and U2 are defined as2

U1�u� = �1 + cos ���cos �e� − sin �e��, �11�

U2�u� = �1 + cos ���sin �e� + cos �e��, �12�

here e�, e� are unit vectors in the directions of increase
f the polar angle � and the azimuthal angle �, respec-
ively. Notice that U1 corresponds to the angular spec-
rum of the sum of an electric dipole field in the x direc-
ion and a magnetic dipole field in the y direction, both
ith equal amplitudes and phases. Similarly, U2 corre-

ponds to the angular spectrum of the sum, with equal
mplitudes and phases, of an electric dipole field in the y
irection and a magnetic dipole field in the −x direction.
hese combinations of crossed dipoles are known to
chieve maximum focal intensity.18,19 The vector MUFs
hen give a continuous transition between a superposition
f dipolar fields (for w→�) and a paraxial Gaussian beam
ith arbitrary uniform polarization (for w→0).
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. FIELDS FOCUSED AT COMPLEX POINTS
. Scalar Case
spatial shift in a field U�r� results from replacing r with

−r0, where r0 is the point to which the initial origin is
ranslated. Notice from Eq. (1) that this shift is equiva-
ent to a transformation of the angular spectrum accord-
ng to

A�u� → A�u�exp�− iu · r0�. �13�

his property is equivalent to the well-known shift-phase
roperty in Fourier analysis.
In particular, since the angular spectrum of a perfect

pherical wave focused at the origin is constant, the ex-
ression for the angular spectrum of a perfect spherical
ave focused at a point r0 is given by A0 exp�−ir0 ·u�,
here A0 is a constant. Let us now consider placing the

ocus at the imaginary coordinate r0=iqez, where q
0
nd ez is the unit vector in the z direction. Then the an-
ular spectrum, say Aq, becomes

Aq�u� = A0 exp�quz� = A0 exp�q cos ��. �14�

t is easy to see that the spherical symmetry is broken,
nd that the main direction of propagation corresponds to
he z direction, i.e., to the direction of the imaginary part
f the position of the focus. The field is largest at the ori-
in, i.e., at the real part of the position of the focus. Ob-
erve also that, as q becomes larger, the angular spectrum
ecomes more sharply peaked, so that the beam is more
irectional and less spatially localized. In fact, as can be
asily verified, for q�1 the resulting field becomes a
araxial Gaussian beam having a waist size equal to �2q.
or smaller q, these fields are nonparaxial generaliza-

ions of a Gaussian beam; and as q tends to zero, these
elds become completely delocalized directionally, reduc-

ng to perfect spherical focused waves for q=0. Therefore
ne expects these fields, referred to in what follows as
FFs, to exhibit a behavior similar to that of the MUFs.
The measures of directional and spatial spread in Eqs.

2) and (3) can be easily calculated in closed form for these
elds:

�� = arccos�2q cosh�2q� − sinh�2q�

2q sinh�2q� � , �15�

�r = �2q cosh�2q� − sinh�2q�

2 sinh�2q� �1/2

. �16�

otice that �r
2 /cos ��=q. Figure 1(a) shows the curve �r

arctan �r versus �� for the MUFs (solid curve) and for
he CFFs (circles) in the scalar case. Surprisingly, the two
urves are practically undistinguishable.

. Vectorial Case
s stated in Subsection 2.B, in the limit when the spatial

ocalization reaches its fundamental minimum, i.e., for
→�, the MUFs become a sum of electric and magnetic

ipole fields, with an angular spectrum given by

A��u� = �U1�u� + 	U2�u�. �17�

s in the scalar case, we consider moving the focal point
f the dipolar fields to the imaginary point r =iqe . The
0 z
ngular spectrum again acquires the usual exponential
actor, leading to

Aq�u� = exp�q cos ��A��u� = exp�q cos ��	�U1�u� + 	U2�u�
.

�18�

uch an angular spectrum defines what we call a vector
FF. The corresponding spatial and directional spread
easures follow from the substitution of Eq. (18) into
qs. (7) and (8). These spreads can also be expressed in
losed-form terms:

�� = arccos��− 3 + 10q − 16q2 + 16q3�exp�4q� + 3 + 2q

2q	�1 − 4q + 8q2�exp�4q� − 1
  ,

�19�

�r = �1 + 3q + �− 1 + q + 4q2 + 8q3�exp�4q�

�1 − 4q + 8q2�exp�4q� − 1 �1/2

. �20�

nlike for the scalar case, there is no simple closed-form
xpression for q in terms of the spreads of vector fields.
owever, it turns out that these spreads again trace a

urve that is practically identical to that pertinent to vec-
orial MUFs, as one can see in Fig. 1(b).

. Correspondence between Minimum Uncertainty
ields and Complex Focus Fields
he results obtained so far suggest that there should be a

ight correspondence between MUFs and CFFs. Indeed,
rom Fig. 1 one could even suspect that CFFs are just the

ig. 1. Behavior of �r=arctan �r versus �� for the MUFs (solid
urve) and for the CFFs (circles) in the (a) scalar and (b) vectorial
ase.
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UFs found in Refs. 1 and 2. This is not the case, how-
ver, as shown by the comparison of their angular spectra
n Fig. 2. In particular, we have considered scalar and vec-
orial MUFs having w=0.7, whose normalized angular
pectra are plotted (circles) as functions of � /�. The solid
urves represent a best fit obtained with the functions

A��� = exp	q�cos � − 1�
, �21�

or the scalar case and

A��� =
1 + cos �

2
exp	q�cos � − 1�
 �22�

or the vectorial case.
Figure 2 shows that the CFFs are very similar but not

dentical to the MUFs. Moreover, from Fig. 1 we realize
hat there is an approximate one-to-one correspondence
etween these fields. To describe such correspondence in
uantitative terms, in Fig. 3 the values of q obtained as in
ig. 2 are reported for several values of w (circles), both in
he scalar and vectorial cases. In particular, it can be seen
hat, for small values of w (i.e., for w1), one has q
1/w2 in both cases. In the opposite limit (i.e., for w�1),

nstead, the relationship w→q depends on the nature of
he fields. For scalar fields one finds q�1/w4, while in the
ectorial case q�1/2w4. This different asymptotic behav-
or between scalar and vector fields will be explained in
ection 4.

ig. 2. Behavior of the normalized angular spectrum (circles) of
a) scalar and (b) vectorial MUFs, as functions of � /�, for w
0.7. Solid curves are best fits obtained by use of Eq. (21) for the
calar case (with q�1.96), and Eq. (22) for the vectorial case
with q�1.43).
So far we have only shown that the CFFs are not exact
UFs for the pair �r, �� defined in Refs. 1 and 2. But why

re they so close to the MUFs? In Section 4 we give an
xplanation of this notable similarity. What we will find is
hat the CFFs are themselves MUFs, but for different
efinitions of the angular spread measure.

. COMPLEX FOCUS FIELDS AS MINIMUM
NCERTAINTY FIELDS
. Lower Bounds and Commuting Relations
ithin the context of quantum optics, it is well known

hat functions of the type exp�q cos �� define a class of
inimum uncertainty states for certain measures of

pread of the photon number and phase (see, for instance,
ef. 20). We now take advantage of the mathematical
nalogy between the quantum number-phase problem
nd the case of 2D classical scalar fields for establishing a
ink with the MUFs proposed in Refs. 1 and 2. The sub-
equent step consists on generalizing this analogy to the
D scalar and vectorial cases. We will show that it is pos-
ible to find suitable angular spread measures for which
he CFFs indeed constitute MUFs. What is more impor-
ant is the fact that these measures, whose definitions are
onsiderably different from the one for ��, lead to remark-
bly similar values for the angular spread of the CFFs.
his, in turn, explains why MUFs and CFFs are practi-

ig. 3. Correspondence between the parameters q (correspond-
ng to the CFFs) and w (corresponding to the MUFs) provided by

best fit of the corresponding angular spectra for (a) scalar and
b) vector fields. The solid curves indicate the asymptotic
ehaviors.
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ally undistinguishable: They minimize measures that
re very similar. For the scalar case, the corresponding
ew measure of angular spread is tied to the measure of
patial spread proposed earlier through a simple uncer-
ainty relation.

We start by deriving the uncertainty relation in the 2D
calar case by noting that the direction vector is now
iven by u��ux ,uz�= �sin � , cos ��, where �� 	0,2�� and
he angular-momentum operator is a scalar, given by L
−id/d�. Furthermore, recall that z was chosen as the
ain direction of propagation of the field, so ux is then the

ransverse component of the wave vector. Its commutator
ith the angular-momentum operator is given by

	ux,L
 = iuz. �23�

y using the standard procedure based on the Cauchy–
chwarz inequality, one obtains the relation

�L
2�ux

2 

�uz

2�

4
+

��uz,L��2

4



�uz
2�

4
, �24�

here the braces denote the anticommutator and, for any
perator O,

�O
2 = �O2� − �O�2, �25�

�O� =

�
2�

A*�u�OA�u�d�

�
2�

�A�u��2d�

. �26�

ince �L=�r and �ux�=0 (due to the appropriate choices of
he origin and the z axis), the relation in Eq. (24) can be
ritten, after simple algebra, as

�r tan �̃� 

1

2
, �27�

here a different directional spread measure, namely, �̃�,
hich is an alternative to ��, is defined as

�̃� = arctan� �ux

�uz�
� = arctan���sin2 ��

�cos �� � . �28�

t must be stessed, however, that unlike the measure ��,
he new measure �̃� does not have a simple geometric in-
erpretation in terms of the centroid of the unit ring
eighted by the angular spectrum.21,22

Notice that inequality Eq. (27) is very similar to the one
iven in Ref. 1 involving the measure of directional
pread ��. However, unlike that relation, the one in in-
quality (27) can be satisfied as an equality. In fact, as is
ell known from the usual derivation of the Cauchy–
chwarz inequality, the first relation in inequality (24) is
atisfied as an equality for angular spectra when LA�u� is
roportional to uxA�u�. This is indeed the case for the
FFs, since it is straightforward to prove that

LAq�u� = iquxAq�u�. �29�

dditionally, since Aq is real, the anticommutator term
hat was dropped in inequality (24) is easily shown to
anish, so both relations in this equation become equali-
ies, as does inequality (27).

To extend the above results to 3D scalar fields, we first
otice that for the angular spectrum of the CFFs,

LAq�u� = iqez � uAq�u�. �30�

herefore we consider the uncertainty relation given by

�L
2 �ez�u

2 

�	Lj,�ez � u�j
�2

4
, �31�

here the convention of implicit sum over repeated indi-
es is used, and the anticommutator term was dropped.
Because Eq. (30) and the fact that Aq is real, we know
rom the outset that the angular spectrum of the CFFs
akes inequality (31) be satisfied as an equality.] Again,
e can replace �L

2 =�r
2. Similarly, by using the fact that

ux�= �uy�=0, we can see that �ez�u
2 = �uy

2+ux
2�= �sin2 ��. Fi-

ally, from the well-known commutation relation

	Lj,uk
 = i�jkmum, �32�

here �ijk is the Levi-Civita tensor, one finds that

	Lj,�ez � u�j
 = �jzk	Lj,uk
 = i�jzk�jkmum = − 2iuz. �33�

herefore, inequality (31) becomes

�r
2�sin2 �� 
 �uz�2 = �cos ��2. �34�

y using straightforward algebra, we find

�r tan �̃� 
 1, �35�

here �̃� is defined by the last expression in Eq. (28). In-
quality (35) is thus the 3D counterpart of inequality (27).

The closed-form expression of �̃� associated with a 3D
FF turns out to be

�̃� = arctan� 2 sinh�2q�

2q cosh�2q� − sinh�2q�
. �36�

gain, we corroborate from the substitution of Eqs. (16)
nd (36) into inequality (35) that the CFFs are the MUFs
orresponding to the alternative measure of angular
pread. Figure 4(a) shows a quantitative comparison be-
ween both measures of angular spread for the CFFs as
unctions of q. We can see that, for these fields, both mea-
ures give very similar results (the maximum relative dif-
erence being of 7%, corresponding to q=1.1). The similar-
ty of these measures for scalar fields like the CFFs
larifies why they are a good approximation of scalar
UFs.
As far as the vectorial case is concerned, there is no

imple first-order equation analogous to Eq. (30). This
act should suggest that, differently from the scalar case,
ectorial CFFs are not MUFs for the pair ��r , �̃��. Never-
heless, it is still possible to express in closed form the an-
ular spread �̃� pertinent to vectorial CFFs. Figure 4(b)
hows the comparison between the two angular mea-
ures, in the same way as shown in Fig. 4(a) for the scalar
ne. We see that even in this case the maximum relative
ifference between �� and �̃� is of 5%, corresponding to
=0.5 (which is even better than in the scalar case). That
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ectorial CFFs are not minimum uncertainty states for
he angular measure �̃� can be rigorously proved by re-
orting to a variational approach, like was done in Refs. 1
nd 2.

. Variational Approach
y performing a variational procedure analogous to the
ne presented in Ref. 1, one finds that the angular spectra
f scalar fields that jointly minimize �r and �̃� are eigen-
unctions of the operator

Rs = 2q�1 − cos �� + q2 sin2 � + L2, �37�

here again s stands for scalar. One can easily verify that
q. (14) is an eigenfunction of Eq. (37) with an eigenvalue
qual to 2q.23

Moreover, the direct comparison of the operator Rs and
he operator Qs given in Eq. (5) explains the asymptotic
ehavior shown in Fig. 3(a) as far as the relation w↔q is
oncerned. In fact, in the limit of small q, the term pro-
ortional to q2 in Eq. (37) can be neglected, and this op-
rator becomes equivalent to the one in Eq. (5), with q
1/w4. In the opposite limit, when q is very large, the

erm proportional to q2 in Eq. (37) dominates over the one
roportional to q, and Rs appears to be different from Qs.
owever, in this limit, the angular spectrum is strongly

ocalized within small values of �. Therefore the cosine in
q. (5) and the cosine and squared sine in Eq. (37) can be
xpanded quadratically around �=0 (valid for small w).
y matching the quadratic terms in both operators, it is

ound that their solutions are similar if q�1/w2. It turns
ut that, even between these two limiting situations, the
wo operators can be made to remain similar over the
anges in � where their ground-state eigenfunctions are
ignificant by choosing the appropriate correspondence
etween w and q.

ig. 4. Behavior, as a function of q, of �� (solid curve) and �̃�

circles) in the (a) scalar and (b) vectorial case.
�

On performing the same variational analysis for the
ectorial case, and on taking into account that the projec-
ion operator Pu acts only on the spatial measure �r, one
btains that, for vectorial CFFs to be MUFs of the pair �r,

˜
�, it is necessary that their angular spectra are eigen-

unctions of the operator

Rv = 2q�1 − cos �� + q2 sin2 � + PuL2, �38�

here v now stands for vector. However, one can show
hat the angular spectrum of the vector CFFs, given in
q. (18), is not an eigenfunction of this operator. The an-
ular spectrum of these fields is instead the ground-state
igenfunction of the operator

Rv� = 4q�1 − cos �� + q2 sin2 � + PuL2, �39�

ith the eigenvalue given by 2�q+1�. Notice the factor of
, instead of 2, in front of the term proportional to q. This
actor explains why the asymptotic behavior for large w
hown in Fig. 3(b) is different from that for the scalar
ase, shown in Fig. 3(a). Also, because of this different fac-
or, for this operator to be the result of a variational deri-
ation, a measure of angular spread must be used that is
monotonic function of the combination �sin2 �� / �cos ��4.
ecause we want to compare this new measure with the
nes used earlier, it must be chosen to have units of radi-
ns and to be constrained to the interval 	0,� /2
. It is
hen reasonable to define the measure, denoted by �̂�, as
he solution of

sin2 �̂�

cos4 �̂�

=
�sin2 ��

�cos ��4 , �40�

hich, after simple algebra, leads to

�̂� = arccos�� 2

1 +�1 + 4
�sin2 ��

�cos ��4
� . �41�

part from the difficulty of giving a physical meaning to
uch a measure, what we want to point out is that all
hree different angular spread measures give very similar
alues for the angular spread of the vector CFFs as shown

ig. 5. Behavior, as a function of q, of the relative difference (ex-
ressed in percent) between �� and �̃� (solid curve) and between

ˆ

� and �� (dotted curve).
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n Fig. 5, where the relative differences (expressed in per-
ent) �1− �̃� /��� and �1− �̂� /��� are plotted as solid and dot-
ed curves, respectively.

. CONCLUSIONS
n the present paper the joint spatial–directional localiza-
ion features of complex-source fields have been studied
n comparison with a recently introduced nonparaxial ex-
ension of the fundamental Gaussian beams.1,2 In par-
icular, we found that, despite the simple analytical struc-
ure of their angular spectra, CFFs provide a class of
onparaxial fields that are surprisingly good approxima-
ions to the MUFs and therefore share their optimum
oint spatial–directional localization properties.

Vectorial CFFs correspond to combinations of dipolar
elds, where the direction of the dipoles is perpendicular
o the direction of the imaginary part of their position.
heppard and Saghafi17 also studied the case of dipoles
ligned with their imaginary displacement. By doing a
tudy like the one presented here, one can easily show
hat these fields are again similar to the vector fields with
inimum uncertainty and azimuthal momentum equal to

ero, studied in Ref. 2.
We provided an explanation for the above similarities

y showing that CFFs are indeed MUFs, but, correspond-
ng to differrent angular spread measures, the definitions
re different from the one used to obtain the MUFs. The
act that functions of the type exp�q cos �� are functions
ith minimum uncertainty was already known within the

ontext of the quantum number-phase problem. Here we
sed the fact that this type of function defines the angular
pectrum of a 2D CFF, and generalized these ideas to the
ase of 3D classical wave fields, both scalar and vectorial.
ur results show that all the angular spread measures
sed here provide values that are mutually similar when
pplied to the MUFs or the CFFs. By minimizing their
ms difference, a one-to-one correspondence is established
etween the two classes of fields.
Of course, in addition to the results presented here,
any possible generalizations along these lines emerges.
hese include the study of the higher-order eigenfunc-
ions of the operator defining the MUFs and their connec-
ion to multipoles at complex locations, as well as the ex-
ension to the nonparaxial regime of fields emitted by
artially coherent sources.
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