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Abstract

The analytical derivation of the phase profile of a diffractive optical element that produces three equi-intense replicas of
an input beam with the maximum efficiency is presented. Such derivation, based on a functional minimization procedure,
leads to a closed form for the phase profile and to an efficiency value slightly lower than the predicted theoretical upper
bound. q 1998 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Beam multipliers, i.e., devices that divide an input
beam into a certain number N of output beams with equal
power, are among the most popular diffractive optical

Ž .elements or DOEs for short . It is well known that,
generally speaking, they are almost untractable in analyti-
cal terms. For this reason, specialized numerical algo-

w xrithms have been devised for designing such elements 1 .
As far as the diffraction efficiencies are concerned, expres-
sions of the upper bounds have been established by

w xWyrowski for either amplitude or phase DOEs 2,3 , and in
w xRef. 4 they are used to derive upper bounds on the

Ždiffraction efficiency of beam multipliers for N from 2 to
.25 generated using phase-only filters.
Although the knowledge of an upper bound can be

helpful in estimating the applicability of a DOE in actual
situations, sometimes it could be important to know what
is the maximum value of the efficiency that can be reached
by a real diffractive phase element.

The answer is quite simple for the cases Ns1 and
Ns2. In the first one, a unitary efficiency is obtained with
a blazed grating, while in the second one the maximum

2 Ž .efficiency, that is 8rp , is reached by a 0,p binary
Ronchi phase grating, as can easily verified. To our knowl-

edge, this are the only cases in which the phase profile
corresponding to the maximum efficiency can be com-
puted analytically.

Even for Ns3, the phase profile corresponding to the
optimum multiplier has not been derived. On the other
hand, a divide-by-three device, or triplicator, has also

Ž w x.application interest see, for example, Ref. 5 . One may
wonder whether for such a simple case a precise maximum

Ž .efficiency not an upper bound can be evaluated and what
sort of continuous phase profile would ensure such a
maximum. In the past, some work has been made about it.
For example a triplicator with efficiency of the order of
0.92 was obtained by slightly modificating a sinusoidal

w x w x w xphase profile 6 . In Refs. 7 and 8 a theoretical effi-
ciency of 0.926 was found by using optimization criteria in
order to have at the same time high values of the effi-
ciency and high uniformity of the intensity of the diffracted
orders.

In this paper we prove that an optimum triplicator
exists, whose phase transmittance we give in a simple
analytic form. As is expected, its efficiency, which, we
stress, is the maximum obtainable, is lower than the upper

w xbound given in Ref. 4 , i.e., 0.938. Furthermore, we prove
that the obtained phase profile is the only one able to
produce such an efficiency.
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2. Theoretical analysis

We intend to evaluate the transmission function of the
DOE that produces three equi-intense replicas of an inci-
dent field and assures the maximum diffraction efficiency.
We shall refer to a phase grating with unitary period. We
assume that the geometrical features of the DOE are large
enough, with respect to the wavelength, to allow a scalar
treatment of the problem.

Ž .If we denote by f x the phase profile, the transmis-
Ž . w xsion function of the grating is t x sexp if x . ByŽ .

Ž .virtue of its periodicity, t x can be expanded into its
Fourier series, i.e.,

`

t x s t exp i2p nx , 1Ž . Ž . Ž .Ý n
nsy`

where

1r2
t s t x exp yi2p nx d x . 2Ž . Ž . Ž .Hn

y1r2

Ž .Our aim is to find the function, say f x , such that the
powers carried by the orders 0, q1, and y1 are equal to
each other, i.e.,

t s t s t , 3Ž .y1 0 1

and the efficiency, defined as

2 2 2
hs t q t q t , 4Ž .y1 0 1

assumes its highest value. This form of the efficiency
derives from the fact that, for a phase-only grating, the
following relation holds:

`
2< <t s1. 5Ž .Ý n

nsy`

Furthermore, the partial reflection of the incident beam on
the DOE surface has been neglected.

The three chosen orders are the central ones but this
does not represent a restriction. Indeed, any different choice
of contiguous orders can be reconducted to this one, by

Ž .adding to f x a suitable linear function of x.
First of all, we note that while the phase of the zero

order does not depend on a spatial shift of the grating
along the x-direction, this is not the case for t and t1 y1
w Ž .xsee Eq. 2 . Since we are interested in the cases in which
< < < <t s t , the origin of the x-axis can be set in such a1 y1

way that the equality

t syt 6Ž .y1 1

is satisfied. In this way, we reduce by one the number of
degrees of freedom at our disposal and the only indepen-
dent coefficients remain t and t .0 1

Ž .Now, let us write the phase function f x in terms of
its even and odd parts, as follows:

f x sf x qf x . 7Ž . Ž . Ž . Ž .e o

Ž . Ž . Ž .Inserting Eq. 7 into Eq. 2 , and taking Eq. 6 into
account, the following expressions are obtained for the
amplitudes of the orders 0 and q1 :

1r2
t s2 exp if x cos f x d x ,w x w xŽ . Ž .H0 e o

0

1r2
t s2 exp if x sin f x sin 2p x d x . 8w x w xŽ . Ž . Ž . Ž .H1 e o

0

Let us now introduce the functional

< < < <JJ f s t qa t , 9Ž . Ž .0 1

with a a positive constant. We shall determine the phase
profile which maximizes JJ for an arbitrary value of a.

Ž .Then condition 3 will determine the value of a. Under
Ž .condition 3 , maximizing JJ leads to the maximum effi-

ciency of the triplicator.
Before going on, we note that, in order to maximize

Ž .JJ f , the even part of f, i.e. f , can be set to zero. Thise

can be shown by starting from the following inequalities
w Ž .xeasily derived from Eq. 8 :

1r2
t F2 cos f x d x ,w xŽ .H0 o

0

1r2
< <t F2 sin f x sin 2p x d x . 10w xŽ . Ž . Ž .H1 o

0

In Appendix A it is proved that the equality signs in Eq.
Ž . Ž . Ž .10 hold if sin f and cos f are positive in the intervalo o
Ž . Ž0,1r2 and, at the same time, f assumes an arbitrarilye

.chosen constant value. In particular, we set f s0 ande
Ž .Eq. 10 becomes

1r2
< < w xt s2 cos f x d x ,Ž .H0

0

1r2
< < w xt s2 sin f x sin 2p x d x , 11Ž . Ž . Ž .H1

0

where the equality fsf has been used. Note that,o
Ž . Ž .comparing Eq. 11 with Eq. 8 written for f s0, thee

coefficients t and t turn out to be positive quantities.0 1
Ž .Hence, from Eq. 6 , t is negative. This agrees with they1

w xresults obtained in Ref. 4 for a continuous-phase grating
for Ns3.

Ž . Ž .Inserting Eq. 11 into Eq. 9 , the following expression
Ž .is obtained for the functional JJ f :

1r2 w x w xJJ f s2 cos f x qasin f x sin 2p x d x .� 4Ž . Ž . Ž . Ž .H
0

12Ž .

According to the variational calculus, the first variation
Ž .of JJ must be 0 around the optimum phase, f x . This

means that letting

f x sf x q´ x , 13Ž . Ž . Ž . Ž .
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Ž .where ´ x is an arbitrary small perturbation, the corre-
Ž .sponding first variation of JJ f , that is

d JJsJJ fq´ yJJ fŽ . Ž .
1r2

f2 ´ x acos f x sin 2p xŽ . Ž . Ž .�H
0

ysin f x d x . 14Ž . Ž .4
Ž .must vanish for every ´ x . Therefore, f must be a

solution of the following equation:

acos f x sin 2p x ysin f x s0, 15Ž . Ž . Ž . Ž .
whence

y1 w xf x ;a s tan asin 2p x , 16Ž . Ž . Ž .
where the explicit dependence on a has been shown in the
argument of f.

Ž .It is worth stressing that the function in Eq. 16
maximizes JJ for any choice of the parameter a and that

< < < <we have not yet imposed the condition that t and t0 1

have to be equal to each other. Actually, as remarked
above, it is just this condition that fixes the value of a.

Ž . Ž .Inserting Eq. 16 into Eq. 11 we can express the
expression of the absolute values of the coefficients t and0

t that maximize JJ in terms of elliptic integrals, as1

follows:

d x 21r2 2< <t s2 s K ya ,Ž .H0 2 2 p0 (1qa sin 2p xŽ .

sin2 2p xŽ .1r2
< <t s2 a d xH1 2 20 (1qa sin 2p xŽ .

2
2 2s E ya yK ya , 17Ž . Ž . Ž .

p a

where K and E denote the complete elliptic integrals of
w xfirst and second kind 9 , respectively. The dependence of

< < Ž . < < Ž .t solid and t dotted on a is shown in Fig. 1.0 1

Ž .Fig. 1. Behavior of the modula of the zero solid and the first
Ž .dotted diffraction order for a triplicator as a function of the a

w Ž .xparameter see Eq. 17 .

Fig. 2. Phase profile corresponding to the optimum triplicator, as a
function of x, for an unitary grating period.

Ž .Equating to each other the two expressions in Eq. 17 , the
following value of a, say a, is obtained:

as2.65718 . . . . 18Ž .
In conclusion, the phase profile of the grating produc-

ing a triplication of an incident light beam with the highest
Ž .efficiency is given by the function in Eq. 16 , where the

Ž .value of a has to be taken as a, given in Eq. 18 . Its
Ž . Ž .efficiency can be evaluated by means of Eqs. 4 , 6 and

Ž .17 , and turns out to be

hs0.92556 . . . . 19Ž .
Fig. 2 shows the phase profile corresponding to the

optimum triplicator, for a unitary grating period. It should
be noted that both the phase profile and the efficiency
value are similar to those obtained by means of numerical

w x w xalgorithms in Refs. 6 and 7 .
Before ending this section, we want to show how, by

choosing suitable values of a, it is also possible to obtain
Ž .from Eq. 16 the phase distribution of the optimum mono-

plicator and duplicator. Indeed, when as0 or a™`,
< < < <maximizing JJ is tantamount to maximizing t or t0 1

Ž < <. Ž . Ž .and then also t , respectively. From Eqs. 16 and 11y1

we have, indeed,

< <t s10
lim f x ;a s0´ , 20Ž . Ž .½ < <t s0a™0 1

and

< <p t s00w xlim f x ;a s sgn sin 2p x ´ .Ž . Ž . ½ < <t s2rp2a™` 1

21Ž .

From the first equation we deduce that the grating
which maximizes the diffraction efficiency of order 0 has a
constant phase profile and produces only one order with
unitary efficiency. This is a trivial result. On the other
hand, the second equation shows that the optimum duplica-
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Ž .tor is a 0,p phase Ronchi grating, with efficiency equal
2 w xto 8rp , which coincides with the value given in Ref. 4

for the Wyrowski upper bound.

3. Conclusions

The analytical derivation of the optimum triplicator has
been presented. It leads to a closed-form expression for the
phase profile ensuring the maximum conceivable effi-
ciency for a DOE that produces three replicas of equal
power of an input beam. This maximum efficiency is
shown to be hs0.92556 . . . , slightly smaller than the
upper bound given by Wyrowski.

The mathematical technique used in this paper can be
extended to find efficiency and phase profile of optimum
divide-by-N DOEs, but in such cases numerical methods
have to be used for maximization of the involved function-

w xals 7 .

Appendix A

Here, we want to prove that, given the following
integrals:

1r2
I s exp if x cos f x d x ,w x w xŽ . Ž .H1 e o

0

1r2
I s cos f x d x , A.1w xŽ . Ž .H2 o

0

1r2
I s exp if x sin f x sin 2p x d x ,w x w xŽ . Ž . Ž .H3 e o

0

1r2
I s sin f x sin 2p x d x , A.2w xŽ . Ž . Ž .H4 o

0

the equalities

I s I A.3Ž .1 2

and

I s I , A.4Ž .3 4

are verified only for particular choices of the function f .e
Ž . Ž .We begin from the case of Eqs. A.1 and A.3 . The

interval 0,1r2 can be divided into N sub-intervals ofŽ .
Ž .width ds1r2 N. Then, if the integrands in Eq. A.1 are

continuous functions, as we suppose, we can write
N

I sd exp if j cos f j , A.5w x w x Ž .Ž . Ž .Ý1 e k o k
ks1

N

I sd cos f h , A.6w xŽ . Ž .Ý2 o k
ks1

where j and h are points suitably chosen inside the k thk k

sub-interval.
For simplicity, we set

cos f j sC , cos f h sD . A.7w xw x Ž . Ž .Ž .o k k o k k

By evaluating the squared modulus of I and I , the1 2

following results are obtained:

2 22I sd C q2 C C g , A.8Ž .Ý Ý1 k h k hk
k h ,k)h

2 22I sd D q2 D D , A.9Ž .Ý Ý2 k h k
k h ,k)h

where

g scos f j qa j yf j ya j .w xŽ . Ž . Ž . Ž .hk e h h e k k

A.10Ž .
Ž .Here, a j is the phase of C and assumes values 0 ork k

p , depending on the sign of C .k

Let us note that, in the limit N™`, j tends to h , sok k
Ž .that C ™D . Then, in this limit, the equality A.3 isk k

w Ž . Ž .xverified only if see Eqs. A.8 and A.9

g s1, ; h ,k . A.11Ž . Ž .hk

This means that, in terms of the function f , the followinge

condition must be met:

f x qa x sF , A.12Ž . Ž . Ž .e

with F constant. With such choice for f , it can be easilye
Ž .verified that Eq. A.3 holds. In particular, if

Ž .cos f x G0, ; xg 0,1r2 , Eq. A.12 reduces tow xŽ . Ž .o

f x sF .Ž .e
Ž .When similar arguments are applied to Eq. A.4 , we

find that f sF
X, with F

X constant, when sin f G0Ž .e o

and f sF
Xyp otherwise. So, if there exist intervals ine

which sin f and cos f have opposite sign, it is notŽ . Ž .o o
Ž .possible to find a function f so that both conditions A.3e

Ž .and A.4 are simultaneously satisfied.
Ž .On the contrary, if a phase f x is found as a solution

of our optimization problem, for which both sin f andŽ .o

cos f have the same sign in the interval 0,1r2 , thenŽ .Ž .o
Ž . Ž .f x must be constant, in order that both Eq. A.3 ande
Ž .Eq. A.4 hold. In particular, this is the case for the

Ž .solution given in Eq. 16 , for which sin f and cos fŽ . Ž .o o

are both positive.
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