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Shape-Invariance Error for Axially
Symmetric Light Beams

Silvia Vicalvi, Riccardo Borghi, Massimo Santarsiero, and Franco Gori

Abstract—A significant aspect of the propagation of coherent
light beams is that the shape of the transverse field distribution
changes. In this paper, the concepts ofshape-invariance errorand
shape-invariance rangeare used to characterize such effects in a
quantitative way. Applications of the theoretical analysis to some
simple but significant cases are presented.

Index Terms—Beams, laser beam distortion, laser beams, laser
modes, optical propagation.

I. INTRODUCTION

I T IS WELL KNOWN that a Hermite–Gauss or a
Laguerre–Gauss beam [1] is shape-invariant. Starting

from the waist plane, the beam undergoes a transverse scale
magnification upon propagation. In addition, its wavefront
passes from planar to spherical and its initial phase changes.
Therefore, it can be said that, up to a transverse scale factor, a
quadratic phase factor, and an overall phase change, the shape
of the beam cross section remains everywhere the same as
at the waist plane. More general beams are not endowed
with such a property and their transverse amplitude and
phase distributions change in a more complicated way in the
course of propagation. Nevertheless, except for pathological
cases to be discussed later, a typical beam exhibits an
approximate shape invariance for a certain range of distances
along the mean axis of propagation. Possessing quantitative
information about shape changes (i.e., modifications of the
transverse amplitude and phase distributions) of a beam
through propagation can be useful, especially whenever a
field with assigned intensity and phase profiles is requested
for practical applications. Moreover, it could permit a better
evaluation of the tolerances in experimental apparatus and give
a useful tool in designing optical instruments. For instance, a
new definition of depth of focus, depending on the incident
beam, could be used in the case of focusing systems.

In this paper we investigate the shape-invariance properties
of a light beam. For the sake of simplicity, we limit ourselves
to the case of axial symmetry. Using such concepts as the
embedded Gaussian beam [2], [3] and the effective radius
of curvature [4], we first discuss how the departure from
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shape invariance can be quantified through ashape-invariance
error (SIE) (Section II). This quantity allows us to define
a shape-invariance range(SIR) up to any desired degree
of accuracy. The problem remains of how these quantities
can be evaluated for a typical beam. We tackle this problem
by using series expansions in Laguerre–Gauss (LG) beams.
Once the expansion coefficients are known, the SIE can be
evaluated at any cross section of the beam (Sections III and
IV). Furthermore, the use of LG expansions gives a clear
insight into the physical phenomenon that leads to losing shape
invariance. In order to illustrate the main results, we work out
some simple examples (Section V).

II. THE SHAPE-INVARIANCE ERROR

Let us consider a general axially symmetric beam, specified
by the field distribution at the transverse plane .
Under the paraxial approximation, the propagated field at a
distance from the starting plane will be given by the Fresnel
formula, that is [1],

(1)

where is the wavelength, , and is the Bessel
function of the first kind and zeroth order.

Obviously, the structure of the propagated field depends on
the analytical expression of the field at the starting plane,
and closed forms for are obtained in very few cases.
Nonetheless, some of the properties of the propagated field
can be predicted without explicitly evaluating the integral in
(1) and hold for any beam propagating under the paraxial
approximation. For instance, if a “width” of the beam is
defined at a given transverse plane as the square root of the
variance of the corresponding intensity distribution, namely

(2)

it is known [2] that the following propagation law holds:

(3)

where is the longitudinal coordinate of the waist plane,
which is defined as the plane where the width reaches its
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minimum value , and is the well-known factor that
gives account of the divergence attitude of the beam, once the
value of is fixed. In terms of the second-order moments
of the transverse intensity distribution, it turns out to be [2]

(4)

where is the width of the Fourier transform of the field
across the waist.

Another useful quantity that can be defined for any paraxial
beam is the average curvature radius, that is, the curvature
radius of the spherical wave that matches the real wavefront
of the beam as best as it can. In formulas, it is defined as [4]

(5)

where is the phase of the transverse field distribution at the
plane . Even in this case the propagation law has a simple
expression, i.e., [4]

(6)

which is valid for any beam propagating under the paraxial
approximation.

Incidentally, note that width and average curvature radius
of a general beam exactly follow the same propagation laws
as the analogous quantities of the fundamental Gaussian beam
having spot-size at the waist given by

(7)

which is known as theembeddedGaussian beam [2], [3].
In the following, for simplicity, we shall limit ourselves to

the case in which the plane coincides with the waist
plane of the beam, and then . The results obtained in
this way will be generalized in Section IV to the case .

Coming back to the purpose of this work, we want to
quantify the modifications undergone by the shape of the
transverse profile of a beam on propagation. Then, the effect
produced on the field by the transverse scale magnification
should be weeded out, as well as the spherical bending of
the wavefront. To this end, we define, at any plane ,
a reference field in the following way. Take the propagated
field and scale it down by the scale factor pertaining to the
embedded Gaussian beam. In order to preserve the total energy
of the beam, such scale contraction must be accompanied
by a proportional increase of the field amplitude. Further,
eliminate the spherical curvature using again the knowledge
of the embedded beam. The result is the reference field at the
plane constant, that will be denoted by .

A further quantity that could be present in the reference
field, but should be removed, is a uniform phase factor. In fact,
although we are interested in a comparison between starting
and reference fields (and not between their intensities), a phase
factor common to all points in the transverse plane is not very
significant from a physical point of view. For example, for
the case of a LG beam, for which a strict shape invariance
is expected, the reference field for anyis equal to the field

at the waist, up to an overall phase factor, arising from the
propagation term and from the presence of the Gouy
phase [1]. So, it is clear that in this case such phases should
be subtracted from the reference field to obtain a strict shape
invariance.

In the case of a general axially symmetric beam, the
procedure is analogous, but it is complicated by the fact that
the determination of the uniform phase to be subtracted is not
that simple. Thus, what we are going to do is to determine a
sort ofaveragephase, which will be subtracted from the phase
of the reference field. In this way, the comparison between the
fields takes into account only phase modulations around this
average value, in addition to amplitude variations.

In order to evaluate the average phase of the reference field,
we proceed as follows. First, we define the quantity

(8)

which is proportional to the mean squared difference between
the field at and the reference field, multiplied by
the phase term . As can be easily verified, such
a quantity is normalized to the interval [0, 1]. Now, in view of
the above remarks about the uniform phase term, the average
phase of the reference field can be defined as that value of,
say , that minimizes .

In order to derive an explicit expression of, we expand
(8), assuming, for simplicity, that (and hence ) carries
unit power, that is

(9)

We then find

(10)

where stands for the real part, the asterisk denotes the
complex conjugate, and

(11)

the symbol denoting the argument.
Since we look for the value of that minimizes , we

have from (10)

(12)

We note that, when and differ only for a uniform
phase factor (as in the case of a LG beam), (12) just returns
such phase.

In conclusion, we introduce theshape-invariance error
(SIE) at distance from the waist as the mean squared
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difference between the field at the starting plane and the
reference field, from whose phase the constant term given in
(12) has been weeded out. More explicitly,

(13)

In particular, means that the two fields are equal
to each other up to a uniform phase term, while if
they are mutually orthogonal. Finally, we define theshape-
invariance range (SIR) of the field [5] as the distance from
the waist plane, say, such that remains less than some
given quantity if . It is a parameter that can be useful in
practice. For example, if a given field profile is required at a
certain transverse plane, the SIR quantitatively expresses how
far one can move from that plane, according to the maximum
error dictated by the experimental requirements.

III. M ODAL REPRESENTATION OF THEBEAM

In order to obtain more useful expressions for the quantities
introduced in the previous section, we expand the beam under
consideration into a series of LG beams [1]. Since we are
studying axially symmetric field distributions, only LG modes
endowed with axial symmetry will be present in the expansion.
Moreover, the waist plane of the component LG modes can be
chosen as coincident with that of the beam under consideration
(i.e., ). This means that the field amplitude at the waist
can be written as

(14)

where are the LG functions at the waist, defined
as [1]

(15)

Here, is the Laguerre polynomial of order [6], is
the spot size of the mode, and the expansion coefficients are
given by

(16)

It is worth noting that, for any fixed field distribution, the
value of the parameter can be chosen arbitrarily and that
the coefficients depend on the particular choice.

The expression of the propagated field in the paraxial regime
can be deduced starting from the modal representation (14).
Across a typical plane , we have

(17)

where , , and are given by the well-known expres-
sions [1]

(18)

where denotes the Rayleigh distance, that is

(19)

We see from (17) that the modifications suffered by the
beam on propagation can be ascribed to the behavior of each
component Gaussian beam. In particular, through propagation
each mode undergoes:

• an overall dephasing, independent ofand equal for all
the modes, taken into account by the factor

;
• a spherical bending of the wavefront, given by

;
• a scaling of the transverse profile, due to the presence of

the term in the argument of ;
• an index-dependent dephasing specified by the term

.

Now, although the features of the propagated beam cannot
depend on the specific choice of the spot size of the modes
used to represent it, each of the above-mentioned phenomena
is conditioned by this choice, because of the relations (18)
and (19). Suppose, however, that a certain value of the spot
size, say , can be found such that each of the modes
spreads with the same rate as the total field and, at any
fixed transverse plane, its curvature radius matches the average
spherical curvature of the beam. In that case, changes of the
shape of the field could be simply ascribed to the dephasing
among the modes.

On the basis of the considerations contained in the previous
section, we see that the value of the spot size ensuring that
the above requirements are met is just the one pertaining to
the embedded Gaussian beam, namely,

(20)

From now on, for any real beam we shall refer to the basis of
LG beams having spot size as itsnatural basis. By making
use of the formula given in the previous section, we can now
see that the expression assumed by the reference field is

(21)

According to the definition of the reference field, the trans-
verse width of the modes equals the value at the waist for any

and the curvature term has been eliminated. As regards the
phase term , which is constant at any transverse
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plane, it has been omitted because it would be in any case
counterbalanced by .

By inserting (14) and (21) into (11), the following result is
obtained for :

(22)

where the orthogonality among the modes has been taken into
account.

By virtue of (12), the expression in (22) also provides, apart
from a minus sign, an explicit expression of the compensating
phase term . In order to give a simple physical interpretation
of this term, it is worth referring to the phase factor ,
given by

(23)

This expression can be interpreted as follows: the uniform-
phase term acquired by the reference field in (21) on propa-
gation is just the average of the phase terms pertinent to the
modes used for its representation, weighted with the squared
moduli of the coefficients . Then the average phase acquired
by the field propagated along a distanceis obtained by adding
to , the phase derived from (23).

It can be easily proved that the present definition of
coincides with the phase introduced in [5], that is ,
when sufficiently small values of (and then of ) are
considered.

Finally, on inserting (14) and (21) into (13) and making use
again of the orthogonality properties of the LG functions, we
obtain for the SIE

(24)

This is one of the basic results of this work and shows how
the changes in the transverse shape of an axially symmetric
coherent beam can be traced back solely to the average mutual
dephasing of the component modes (in the natural basis).

IV. EXTENSION TO THE CASE

The results contained in the previous two sections were
obtained in the case in which the starting plane coincides
with the waist plane of the beam. Now this limitation will
be removed and the generalization to the case of a field whose
waist is not at will be derived. On the basis of the
analysis carried out in Section III, the beam must be expanded
by means of LG modes, having waist planes coincident with

that of the beam, that is, at , and spot size at the waist
given by (7), here reported for clarity:

(25)

Then, the natural basis pertinent to the field is known if we
are able to evaluate the coordinate of the waist plane, the
factor, and the width of the beam at the waist, starting from
the knowledge of the field distribution at . The solution
of this problem, relative to the case of a one-dimensional
partially coherent beam, is contained in [7]. By following the
same lines outlined in that paper, the following results are
obtained for the case of an axially symmetric coherent beam:

Im
(26)

(27)

(28)

where denotes the power of the beam, which is assumed
equal to 1 [see (9)], and stands for the imaginary part.

Once and have been evaluated by means of
(25)–(28), we can write the field at as a superposition of
LG functions having spot size at the waist plane, that is

(29)

where , , and are the parameters of the modes at
, whose values can be obtained by using the propagation

laws given in (18) and (19), provided that is replaced
by and by . The evaluation of the expansion
coefficients involves the solution of the following integrals:

(30)

From (29), it can be noted that, unlike the case treated in the
previous section, the field has an average phase different
from zero and a finite average radius of curvature, and this
must be taken into account when the reference field at a general
plane has to be considered. Consequently, some points
of the rule given in Section II for the derivation of from
the propagated field must be changed. In particular, the
transverse scale and the average radius of curvature of
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must be related to the corresponding quantities of, so that
the reference field will be given by

(31)

A remark about phase is also needed. In fact, in this case,
accounts for the uniform phase acquired by with respect

to that already present in . Its expression turns out to be

(32)

as can be easily derived by following a procedure analogous
to the one reported in Section III.

Finally, the SIE assumes the following form:

(33)

We see that, when the starting plane does not coincide with
the waist plane, the SIE depends on the dephasing of each
component mode with respect to its initial phase. In particular,
since the phase saturates to the value as ,
if is negative and its modulus is much greater than the
Rayleigh distance, the SIE will be approximately equal to zero
for any , and consequently the SIR will be infinite.
Of course, this is what one expects because of the shape-
invariance properties of diffracted fields in the Fraunhofer
region [8].

V. EXAMPLES

A. A Single LG Beam

An immediate check of the correctness of the theory above
exposed can be performed by considering a field given by a
single LG mode of order and spot size , i.e.,

(34)

which is known to be shape-invariant throughout the space, for
paraxial propagation. In this case, by inserting the expressions
of and , given by

(35)

(36)

into (20), we see that the value of is just . This means
that only one term is present in the expansion of this field
when its natural basis is used.

Moreover, the phase evaluated by means of (23) is
trivially equal to , so that is exactly
the same as the field distribution at the plane . As a
consequence, the shape-invariance error is zero for any value
of , as was expected, and then the SIR of a Gaussian beam
is infinite.

B. Finite Superposition of LG Beams

A more significant example is given by the superposition of
a finite number of LG modes with the same spot-size. At
the common waist plane of the beams, the field distribution
can be written as

(37)

where is the total number of the component modes and is
greater or equal to 2.

Following analogous lines as those proposed by Mart´ınez-
Herrero and Mejı́as in [9] for the determination of the first- and
second-order intensity moments of one-dimensional partially
coherent beams, we obtain in the present case forand
in (38) and (39), shown at the bottom of the page, where

is the Kronecker symbol.
It can be easily verified that does not coincide with

the value of the natural spot size, given in (20), unless only
nonadjacent modes are present in (37). In this case,and

have the expressions relative to a superposition of mutually
uncorrelated modes [2] and the natural spot size turns out to
be just .

As a simple example, we consider the case and write

(40)

If , due to the above reason, the expression on
the right-hand side of (40) is nothing but the natural modal
expansion of the field . Regarding the SIE, starting from
(24), the following closed-form result is obtained:

(41)

The behavior of is shown in Fig. 1, for ,
, , mm, and m. It

can be seen that the error vanishes at certain distances from
the waist. More precisely this happens at the distances,

(38)

(39)
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Fig. 1. Behavior of the SIE as a function ofz for a superposition of two
LG modes, withjcnj2 = 0:3; jcmj2 = 0:7; jn � mj = 6; v0 = 1 mm,
and � = 0:5 �m.

satisfying the following equation:

(42)

with integer . This behavior is easily understood by noting
that, when , the two propagated LG fields have the same
phase difference as at the plane , so that the overall field
distribution self-reproduces, apart from scale, uniform phase,
and curvature factors.

We note that vanishes also in the limit
and this means that is self-reproducing under Fourier
transformation, i.e., it is a self-Fourier function [10]–[15]. Such
a behavior is observed in general, whenever (40) contains LG
modes with the same parity, and then is even, as
can be seen from (42). Indeed LG functions of even order are
eigenfunctions of the Fourier kernel with eigenvalue 1, while
those of odd order have eigenvalue1. Therefore, any linear
combination of (two or more) LG functions with even (odd)
indexes gives a self-Fourier function and then an SIE vanishing
in the far field. In addition, this kind of superposition always
gives rise to beams whose natural spot size coincides with the
spot size of the modes.

A similar analysis can be performed when
but, in such a case, since the condition (42) is never satisfied,
the interpretation of the results is not so immediate. Moreover,
since the natural spot size does not coincide with, an infinite
number of terms has to be considered in the natural expansion
of .

C. Flattened Gaussian Beams

As already said, the knowledge of how the transverse
shape of a beam changes upon propagation is useful, for
example, for practical applications. A significant example is
that of beams showing a flattop profile at a certain transverse
plane, say the waist plane. Beams of this kind are required,
for instance, in optical data processing, laser welding and
branding, and laser-stimulated etching. In these cases, it may
be interesting to know how far from the waist plane the field
distribution approximately maintains its shape. On the basis
of our analysis, this is tantamount to evaluating the range of

distances, for which the SIE keeps below an assigned value,
chosen according to the experimental requirements.

Among the various mathematical models used to describe
flattop profiles [16]–[18], we choose the so-calledflattened
Gaussian beams(FGB’s) [17]. They proved to be particularly
useful in the study of the paraxial propagation problem [19].

The field distribution of an FGB of order at the waist
plane is given by [19]

(43)

where is an amplitude factor, is a real quantity express-
ing the width of the beam, and is an integer related to the
flatness of the profile. For , it gives a Gaussian function,
becomes flatter and flatter with increasing, and tends to the
function in the limit .

Up to now, the study of the properties of a FGB through
propagation has been performed by expanding the field by
means of LG functions having spot size
[19]. Now, in order to study how the profile of a FGB changes
upon propagation, we set about evaluating its natural modal
expansion. Of course, in this case we expect that an infinite
number of terms will contribute to the modal expansion, so
that the SIE has to be evaluated numerically.

First of all, recalling the results obtained by Baginiet al.
for and [19, eqs. (35) and (36)], the value of (20)
turns out to be

(44)

where can be expressed as follows:

(45)

By inserting (43) into (16) and using [20, formula 2.19.3.2]
to solve the integral on the right-hand side, the following
expression is obtained for the coefficients:

(46)

where are the Jacobi polynomials [6] and the parameter
is defined as

(47)

On inserting the values of the coefficients into (24), it is
possible to evaluate the SIE as a function of. Results obtained
for several values of are shown in Fig. 2. We remark that,
at any transverse plane , the SIE increases with
increasing the order . This is a consequence of the fact that,
on increasing , the profile more and more resembles a circ
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Fig. 2. SIE versusz for FGB’s with v0 = 1 mm, � = 0:5 ��m, and
different values ofN .

Fig. 3. SIR versusN for FGB’s with v0 = 1 mm and� = 0:5 �m, for
different values of".

function so that, even for small values of, significant changes
of the shape are observed.

In Fig. 3, the SIR is drawn as a function of for four
different values of the error, say. For practical purposes, this
figure may be used to estimate, for a given order of the beam,
the maximum distance, for which the error remains lower than
.

As an example, in Fig. 4, moduli [Fig. 4(a)] and phases
[Fig. 4(b)] of (solid curve) and (dashed curve) are
plotted together for . The value of the distance is
chosen in such a way as to give rise to . In Fig. 5(a)
and (b), the same quantities are plotted for , keeping
fixed the value of (5%). As expected, the higher the order of
the beam, the smaller the value of. It can be noted that, for
the chosen value of, not only the amplitudes, but also the
phase profiles of the reference field are very similar to those
of the starting field, at least for those values offor which
the field is significantly different from zero.

A separate comment is deserved for the case of the circ
function (or whenever discontinuities are present in the starting
field). It is known [21], indeed, that in such case diverges
and, as a consequence, (20) furnishes a vanishing value for
the natural spot size. This is, of course, a pathological case,
to which formulas given in the previous sections cannot be

(a)

(b)

Fig. 4. Behavior of (a) modulus and (b) phase (in radians) of the reference
field V R

z (solid curve) together with those ofV0 (dotted curve), versusr=vo,
for FGB’s with v0 = 1 mm, � = 0:5 �m, N = 4, z = 340 mm,
corresponding to a value of the SIE of 5%.

applied. It should be considered a limiting case of the class
of the FGB’s for . For example, Fig. 3 gives a clear
hint of the fact that, for any fixed value of, the SIR goes to
zero as , and this agrees with the features of the field
diffracted by a circular aperture under Fresnel approximation.

VI. CONCLUSIONS

For a certain interval along the propagation axis, the field
cross section of a typical light beam approximately maintains
the same shape, except for a transverse scale factor and a
change of curvature of the wavefront. To quantify such behav-
ior, we used beam parameters calledshape-invariance error
(SIE) andshape-invariance range(SIR). Such parameters can
be evaluated for a general axially symmetric beam, starting
from the modal expansion of the field distribution at the waist
in terms of LG functions with a suitable spot size.

In order to verify the correctness of the theory and to high-
light the possibilities of this approach, we presented examples
pertinent to some classes of beams of practical interest.

In view of the increasing interest of partially coherent light
beams, an extension of the above analysis in this sense could
be considered.
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(a)

(b)

Fig. 5. The same as in Fig. 4 but withN = 25. In this case the value of
the SIE of 5% is reached atz = 97.
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