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Focal shift of focused flat-topped beams
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Abstract

The phenomenon of focal shift is studied for the case of focused coherent beams showing a flat-topped transverse profile.
The model describing such beams is that of flattened Gaussian beams, which, due to their peculiar analytical expression, are
particularly fit for the study of paraxial propagation of flattened beams. Focal shifts for the fundamental Gaussian mode and
for the field produced by diffraction of a converging spherical wave by a circular aperture are shown to be obtainable by this
model as particular cases. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

When a light beam is focused through a converging
lens, the axial coordinate where the intensity takes its
maximum value does not coincide, in general, with the
position of the focus as predicted by geometrical optics.
Such phenomenon is currently known as focal shift. It was

w xfirst observed dealing with microwaves 1,2 , while study-
ing diffraction of a spherical wave by a circular aperture,
and later it was also predicted for focused Gaussian beams
w x3,4 .

w xIn 1981, Li and Wolf 5 showed that the actual posi-
tion of the focus is always shifted toward the aperture,
with respect to the position predicted by geometrical op-
tics, and that the amount of such a shift depends on the

Ž .Fresnel number N of the aperture, when viewed fromF

the geometrical focus. In particular, the shift increases with
decreasing N and becomes significant for values of NF F

less than 10.
The interest on focused light fields is presently still

very high, due to their theoretical and application aspects
w x6–8 . In particular, focal shifts, which have been studied

Žalso for other classes of focused beams apertured Gauss-
. wian, annular, Bessel–Gauss beams, aberrated waves 9–

x12 , have shown to be of great relevance in the study and
design of laser cavities. In fact, while for imaging optical

Žsystems Fresnel numbers are generally very high of the
.order of a few thousand and then the focal shift can be

neglected in most applications, this is not the case for laser
cavities, which may be characterized by Fresnel numbers

w xof the order of the unity 13 .
In this work we show results pertinent to the evaluation

of the focal shift of focused flattened beams, i.e., beams
that present a flat-topped profile at a given plane orthogo-
nal to the propagation axis. Beams of this kind are encoun-
tered, for instance, in the study of optical resonators with

w x w xvariable reflectivity 13–16 or graded-phase mirrors 17 .
The model which will be used to describe such beams

is that of the so-called axially symmetric flattened Gauss-
Ž . w xian beams FGB 18 . They are characterized by two

parameters, the order N and the waist size w , related to0

the flatness of the field profile at the waist plane and to its
width, respectively. The most useful property of FGBs is
that they can be expressed as a finite sum of Laguerre–

w xGaussian modes 13 and therefore their paraxial propaga-
tion features can be studied in an exact, sometimes very

w xsimple way 18–22 . For this reason the FGB approach
should be preferred to other models, such as super-Gaus-
sian beams, whose paraxial propagation can be dealt with

w xonly through numerical techniques 23,24 . A further ap-
proach of interest has been recently proposed by Sheppard
w x25 .
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2. Preliminaries

We define a FGB as a beam specified by the following
w xfield distribution at its waist plane 18,20 :

2Nq1 rŽ .
U r ,0 sA exp yŽ .N o 2w0

=

n2N 1 Nq1 rŽ .
, 1Ž .Ý 2n! w0ns0

where A is a constant factor, w is a positive parameter,o 0

and N is an integer greater or equal to zero, which is the
order parameter of the FGB, alluded to in the Introduction.
Here, a reference frame with cylindrical coordinates
Ž .r,c , z , having the z-axis and the zs0 plane coincident
with the propagation axis and the waist plane of the beam,
respectively, has been introduced. Since we consider an
axially symmetric beam, all the quantities pertinent to the
field are supposed to be evaluated across a meridional
plane. This allows us to consider them as functions of r
and z alone.

Ž .In Fig. 1 curves of U r,0 rA versus rrw are shownN o 0

for several values of N. It can be seen that the curve is
Gaussian for Ns0, becomes flatter and flatter with in-

Ž .creasing N, and tends to the function circ rrw when N0

goes to infinity.
The propagation of a FGB through a general paraxial

w xoptical system was studied in Ref. 20 and the particular
w xcase of a focused FGB was extensively treated in Ref. 21 .

In the following we report some results, pertinent to the
latter case, which will be used to evaluate the focal shift.

w xFollowing the classical approach of Lommel 26 , we
introduce the dimensionless coordinates

r zy f
ysF , usF , 2Ž .

w f0

where the parameter

Fskw2rf 3Ž .0

w xcoincides with 2p times the Fresnel number 26 pertinent
to a circular aperture of radius w .0

Using these new variables, the expressions of the prop-
agated field and intensity take very simple forms in the
limit of large Fresnel numbers. Indeed, the on-axis propa-

w xgated intensity takes the form 21

2Ž .y Nq1w x1q iur2 Nq1 y1Ž .2Ž`.I u s A F ,Ž . Ž .N o 2u
4Ž .

Ž .where the superscript ` has been used to remind that
such an expression holds for high Fresnel numbers only. It
should be stressed that, in this limit, once N has been

Žchosen the intensity profile is completely specified apart
2. Ž .from the overall factor F because the function in Eq. 4

does not depend either on the numerical aperture of the
system or on the Fresnel number. Moreover, the intensity
distribution is symmetric with respect to the position of the
geometrical focus. In Fig. 2, the on-axis intensity is shown
for several values of the order N.

In the particular cases of a fundamental Gaussian beam
Ž .Ns0 and of a spherical wave diffracted by a circular

Fig. 1. Flattened Gaussian profiles for some values of N.
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Fig. 2. On-axis intensity for some values of N in the limit of high Fresnel numbers.

Ž . Ž .aperture N™` , it is easy to show that Eq. 4 takes the
forms

2A F 1oŽ`.I u s , 5Ž . Ž .0 2ž /2 1qu r4

2 2A F sin ur4Ž .oŽ`.I u s , 6Ž . Ž .` 2ž /2 ur4Ž .

respectively.

In the next section we will see how the expression of
the on-axis intensity can be generalized to the case of any
Fresnel number and show how this more general expres-
sion gives account of the presence of a focal shift.

3. Focal shift of FGBs

The propagated field in the more general case of an
arbitrary Fresnel number can be easily deduced starting

Fig. 3. On-axis intensity for Fs5 and some values of N.
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Fig. 4. On-axis intensity for Fs10 and some values of N.

from the results given in the previous section, by means of
Ž . w xa suitable non-linear scaling of the coordinates 27 .

In fact, by introducing the variable

u
u s , 7Ž .F 1qurF

the on-axis intensity for any value of F, denoted by
ŽF .Ž . w xI u , turns out to be 27N

2uFŽF . Ž`.I u s 1y I u , 8Ž . Ž . Ž .N N Fž /F

Ž`. Ž .where I is given in Eq. 4 .N

To show the effect of small Fresnel numbers on the
ŽF .Ž .axial intensity, in Figs. 3 and 4 plots of I u areN

reported for two different values of F, versus the quantity
urF. The latter coincides with the relative coordinate
Ž . w Ž .xzy f rf see Eq. 2 . By further increasing F, the
curves become more and more similar to those of Fig. 2.

It can be noted that the value of the axial intensity at
w xzs f is independent of N, as was proved in Ref. 21 , and

Ž .2is given by I s A Fr2 , while its maximum value, say0 0

I , as well as the corresponding coordinate, z , dependsM M

on both N and F.
The value of z can be found by taking the derivativeM

Ž .of the function in Eq. 8 and searching for its zeros. More

Fig. 5. Relative focal shift versus F for some values of N.
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precisely, the condition for a maximum of the on-axis
intensity is

d
ŽF .I u s0, 9Ž . Ž .Ndu

Ž .where Eq. 8 must be used. Since

d du dF
s , 10Ž .

du du duF

Ž . Ž .and, from Eqs. 7 and 2 , du rdu is a positive quantityF
Ž .if z)0 as in our case , then the point of maximum

intensity on the axis must be a root of the following
equation:

d I ŽF . 2 uN F Ž`.sy 1y I uŽ .N Fž /du F FF

2u dF Ž`.q 1y I u s0. 11Ž . Ž .N Fž /F duF

Finally, by introducing the function

y1d
Ž .Ž`. `G u s I u I u , 12Ž . Ž . Ž . Ž .N F N F N FduF

Ž .condition 11 becomes
1G u s Fyu . 13Ž . Ž .Ž .N F F2

Ž .Eq. 13 can be solved numerically for any value of N,
Ž`. Ž .after inserting the expression of I , given in Eq. 4 , intoN

Ž .Eq. 12 . The corresponding values of z are obtained byM
Ž . Ž .means of Eqs. 2 and 7 . Among the various solutions,

the one pertaining to the global maximum is found to be
characterized for being the closest to the coordinate us0.

Ž .It is useful to explicit Eq. 12 for Ns0 and N™`.
Ž . Ž .In such cases, indeed, from Eqs. 5 and 6 we have

u 2F
G u sy q , 14Ž . Ž .0 F ž /2 uF

and

2
G u s , 15Ž . Ž .` F 1rtan u r4 y4ruŽ .F F

Ž .which, together with Eq. 13 , lead to the already known
expressions for the focal shift of Gaussian beams and
spherical waves diffracted by a circular aperture, respec-

Ž w x.tively see, e.g., Ref. 5 .
Ž .The solution of Eq. 13 in the general case gives

results shown in Fig. 5, where the relative focal shift
Ž .D frfs z y f rf is reported versus F for some valuesM

of the order N of the FGB. Several considerations can be
made. First, the relative shift is always negative and tends
to vanish for high values of F, as was expected. Moreover,
when F approaches zero, it tends to y1, corresponding to
the fact that in this limit the axial intensity is maximum at

Ž .the lens plane z s0 . As regards the dependence on theM

steepness of the flattened Gaussian profile, we note that for
any fixed value of the Fresnel number the relative focal

Ž .shift increases in modulus with increasing N. Finally, the
Ž .relative intensity excess, defined as D IrI s I y I rI ,0 M 0 0

is shown in Fig. 6.
The cases Ns0 and N™` can be directly compared

w xto those of Figs. 4 and 5 of Ref. 9 , where focal shifts and
intensity excesses of focused truncated Gaussian beams in
the weak and strong truncation limit, respectively, are
reported.

Fig. 6. Relative intensity excess versus F for some values of N.
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