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Fisica della Materia, Via della Vasca Navale, 84 I-00146, Rome, Italy

Received 18 May 1998

Abstract. We present a simple model for the orbital angular momentum of a light beam. Using
heuristic arguments, we evaluate the expectation value of such a quantity for a photon. The
resulting expression coincides with that derived from Maxwell’s equations. Examples are given
to illustrate the main points.

1. Introduction

The angular momentum of photons is a subject whose exposition at an elementary level
is not trivial. Since Maxwell’s equations can be considered as the quantum theory of the
electromagnetic field for the single photon (Akhiezer and Berestetskii 1965, Heitler 1984,
Marcuse 1980), one can start from the classical definition of the angular momentum of a
radiation field. It turns out that this quantity can be divided into two parts, which can be
interpreted asorbital andspincomponents. Although such a division has to be managed with
some caution (Akhiezer and Berestetskii 1965, Heitler 1984, Marcuse 1980) its usefulness is
beyond dispute. Unfortunately, the mathematical derivation of this result is rather long and
intricate. Consequently, one would like to introduce the main results without embarking upon
the mathematical details. As for the photon spin, things go smoothly. Since its eigenstates are
states of circular polarization of the light field, one can induce the existence of photon spin
by considering the rotary motion induced in electrons of materials illuminated by the wave
field (see the beautiful discussion by Hecht (1987)). Furthermore, the analogy with the spin
of material particles can be exploited. Finally, convincing experiments can be quoted, starting
from Beth’s celebrated experiment (Beth 1936) and proceeding to present-day experimental
observations (Frieseet al 1998, Simpsonet al 1997). On the other hand, the orbital part
seems to lack an intuitive meaning and the customary field expansion into spherical harmonics
does not add much insight. As a result, one most often omits the concept of orbital angular
momentum of light altogether.

In recent times, several researches have been carried out on the orbital angular momentum
of light beams (Allenet al 1992, Van Enk and Nienhuis 1992, 1994a, Courtialet al 1997) in
which the paraxial approximation has been used as a good approximation. These investigations
have led to many new results and have greatly clarified the subject. Furthermore, significant
applications of these results have been demonstrated (Simpsonet al 1997, Frieseet al 1998).
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Therefore, it seems of interest to propose a simple model for the orbital angular momentum of
photons which can be presented with minimal prerequisites. Essentially, the required concepts
are that a photon possesses a linear momentum and that the optical intensity can be thought
of as proportional to the spatial probability density of the photon. Both ideas are generally
familiar to the student from discussions about the photoelectric and Compton effects, as well
as from the interpretation of classical intensity distributions in diffraction and interference
phenomena in terms of single-photon behaviour (Hecht 1996). An elementary knowledge
of the scalar complex representation of optical fields is the only other requirement. As we
shall see in section 2, the correct formula for the orbital angular momentum of a photon can
be derived within a few steps using a simple, almost pictorial representation of the photon
behaviour. Further insight into the meaning of the angular momentum can be gained through
the worked examples in section 3.

2. A model for the orbital angular momentum of a photon

Let us consider a certain plane, to be taken asz = 0, illuminated by a monochromatic
light beam. As mentioned in the introduction, the photon spin is connected with states of
circular polarization. As a consequence, if we assume that the beam is linearly polarized, the
expectation value of the spin angular momentum is zero and we can focus our attention on the
orbital part only. In the scalar, complex representation of the light beam (Mandel and Wolf
1995), we can describe the field distribution acrossz = 0 through a functionV (x, y). There
is no need to specify the exact meaning ofV ; it could, for example, represent the complex
electric field of the wave. The important point is its probabilistic meaning. Following the idea
first put forward by Einstein, we assume that for a single photon, the squared modulus ofV is
proportional to the probability density that the photon crosses the planez = 0 at point(x, y).
The other idea we need is that a monochromatic photon of frequencyν possesses a linear
momentum with modulushν/c, whereh is Planck’s constant andc is the speed of light. We
must specify, however, the direction of such a vector. With this aim, let us assume that in the
neighbourhood of(x, y) the wavefront of the beam can be approximated by its tangent plane
(see figure 1). In other words, we locally replace the wavefront by a plane wave. Then the
linear momentum of a photon passing at(x, y) can be thought of as directed along the wave
vector, sayk, of such a plane wave. Sincek = 2πν/c, the linear momentum has a modulus
h̄k, whereh̄ = h/(2π). Now, let kx andky be the transverse components ofk. Then the
z-component of the angular momentum of the photon is

mz = h̄(xky − ykx). (1)

Of course, we do not know where the photon hits the planez = 0. Therefore, we must content
ourselves with the expectation value ofmz, which is to be computed through the probability
density for the crossing point. In view of the above remark about the meaning of|V (x, y)|2,
such a probability density, sayp(x, y), can be written

p(x, y) = |V (x, y)|2∫∫ |V (x, y)|2 dx dy
(2)

and the expectation value for the angular momentum along thez-axis is

〈mz〉 = h̄
∫∫ (

xky − ykx
)
p(x, y)dx dy. (3)

It remains to be seen howkx andky can be derived from the knowledge ofV (x, y). To this
end, let us writeV (x, y) in the form

V (x, y) = |V (x, y)| exp[iφ (x, y)]. (4)
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Figure 1. Local approximation of a wavefront by its tangent plane.

If the wavefront is sufficiently regular, as in the case of paraxial beams, we can expand the
phase in a neighbourhood of(x, y) and consider only the first-order terms, i.e.

φ(x + ξ, y + η) = φ(x, y) + ∂φ
∂x
ξ + ∂φ

∂y
η (5)

whereξ andη represent small deviations alongx andy, respectively. When this expression of
the phase is compared to the phase distribution, sayψ(x, y), produced by a plane wave across
the planez = 0, namely

ψ (x + ξ, y + η) = α0 + kx(x + ξ)+ ky(y + η) (6)

whereα0 is an initial phase term, we see that the following equations hold

kx = ∂φ

∂x
ky = ∂φ

∂y
. (7)

On inserting equations (2) and (7) into equation (3) we obtain

〈mz〉 = h̄
∫∫
(x ∂φ/∂y − y ∂φ/∂x) |V (x, y)|2 dx dy∫∫ |V (x, y)|2 dx dy

. (8)

This is the expected value for thez-component of the orbital angular momentum of a photon.
It coincides with the expression derived from Maxwell’s equations (Van Enk and Nienhuis
1992, Courtialet al 1997). It is remarkable that the above heuristic argument can lead in such
a simple way to the right result.

A few comments can be of help. We evaluated the expected value of the angular momentum
along thez-axis. A different value can be expected if we refer the angular momentum to an
axis parallel to thez-axis but passing through a typical point(xa, ya) at z = 0. In this case,
equation (1) has to be replaced by

m′z = h̄
[
(x − xa) ky − (y − ya) kx

]
(9)

and equation (3) becomes〈
m′z
〉 = 〈mz〉 − h̄ (xa〈ky〉 − ya〈kx〉

)
(10)
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Figure 2. A tilted beam impinging on the planez = 0.

where

〈kα〉 =
∫∫

kαp(x, y)dx dy (α = x, y) (11)

are the expected values of thex- andy-components of the wave vector. It may well happen
that both〈kx〉 and〈ky〉 vanish (we shall see an example later). In this case the orbital angular
momentum becomes an intrinsic feature in that it is independent of the coordinates of the point
at which the chosen axis crosses the planez = 0†.

As a further remark, let us note that for certain types of field distributions polar rather than
cartesian coordinates are used. Letting

x = r cosϑ y = r sinϑ (12)

we can write
∂

∂ϑ
= ∂x

∂ϑ

∂

∂x
+ ∂y

∂ϑ

∂

∂y
= x

∂

∂y
− y

∂

∂x
(13)

so that (8) becomes

〈mz〉 = h̄

2π∫
0

∞∫
0
(∂φ/∂ϑ) |U(r, ϑ)|2 r dr dϑ

2π∫
0

∞∫
0
|U(r, ϑ)|2 r dr dϑ

(14)

whereU specifies the field distribution atz = 0 in polar coordinates.

3. Examples

Suppose a TEM00 Gaussian mode (Siegman 1986) impinges on the planez = 0 centred at a
point (x0, y0). Further, let us assume the axis of the beam to be inclined with respect to the

† The word ‘intrinsic’ is used throughout the paper to say that the orbital angular momentum does not depend on the
chosen axis. Of course, it should not be confused with the spin angular momentum, which is sometimes referred to
as intrinsic.
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z-axis (see figure 2). Neglecting the ellipticity induced by such inclination (assumed to be
small) we write the corresponding field distribution as

V (x, y) = A exp

(
− (x − x0)

2 + (y − y0)
2

v2

)
exp[i(Kxx +Kyy)] (15)

whereA is an amplitude term,v is the spot size, andKx andKy are thex- andy-components
of the mean wave vector of the beam. In other words,K is directed along the beam axis. On
substituting equation (15) into equation (8) we find through simple steps that

〈mz〉 = h̄
(
x0Ky − y0Kx

)
. (16)

It may be worthwhile to note that equation (16) gives the same value that would pertain to a
photon crossingz = 0 at (x0, y0) (see equation (1)). This can be interpreted by saying that
such a point plays the role of a centre of mass for the beam. It is seen that the present angular
momentum is not an intrinsic feature of the beam. Indeed it can be made arbitrarily high (at
least in principle) or vanishing through a suitable choice of(x0, y0) and(Kx,Ky).

As a second example, we shall consider a well known class of Laguerre–Gauss beams
(Siegman 1986) specified at their waist by the distributions

Un(r, ϑ) = A rn exp(±inϑ) exp

(−r2

v2

)
(17)

whereA is a constant andn is an integer number. On substituting equation (17) into (14) we
obtain at once

〈mz〉 = ±nh̄. (18)

This beautiful result was first derived by Allenet al (1992). Writing the phase of the field in
equation (17) asφ = ±n arctan(y/x), we deduce from equation (7) that

kx = ∂φ

∂x
= ∓ n y

x2 + y2
= ∓ nsinϑ

r

ky = ∂φ

∂y
= ± n x

x2 + y2
= ±ncosϑ

r
.

(19)

Using equation (19), it is easily seen through equation (11) that〈kx〉and〈ky〉 vanish. Therefore,
the expected value of the angular momentum (18) has an intrinsic meaning, so that Laguerre–
Gauss beams, differently from the previous example, possess a well defined orbital angular
momentum. This remark can be applied to every field whose phase distribution depends onϑ
only through the phase term exp(±inϑ), regardless of the dependance on the radial variable.
Fields of this type are said to possess a vortex structure (Berry 1981, Indebetouw 1993), because
their wavefronts are helicoidally shaped, and have been the subject of much research in recent
times.

4. Conclusions

We have shown that an elementary model for the photon behaviour can lead to the correct
formula of the angular momentum of paraxial light beams. Obviously, more general radiation
fields may show features that would not be revealed by our simplified treatment (Barnett and
Allen 1994, Van Enk and Nienhuis 1994b). However, we think that the present model affords
a simple introductory view of the phenomena.
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