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Abstract—An analysis of quasi-optical grills for lower-hybrid
waves for heating and current drive purposes is presented.
The tokamak plasma density versus the abscissa entering the
plasma is assumed to behave like a step and a subsequent
ramp. The study is performed by means of a two-dimensional
formulation employing cylindrical waves. A detailed numerical
analysis is presented, which allows us to show results for different
configurations useful in practical cases and comparisons with the
constant-density case.

Index Terms—Cylinders, cylindrical arrays, electromagnetic
coupling, electromagnetic launching, electromagnetic scattering,
plasma heating, plasma waves.

I. INTRODUCTION

A S is well known, mechanisms currently used to couple
radiofrequency radiation to lower-hybrid plasma waves

for heating and current-drive purposes make essential use of
evanescent waves [1]. Waveguide grills [2] are presently the
most widely used devices in toroidal plasmas, due to the very
high flexibility regarding both the launched spectrum and the
antenna directivity. However, thousands of waveguides are
needed for next-step devices (like International Theormonu-
clear Experimental Reactor) with obvious handling problems.

In recent years, many alternative solutions have been pro-
posed and developed to simplify the layout and the operation
of the coupling structure. Among them, we recall the multi-
junction [3], which subsequently gave rise to the hyperguide
[4], and the quasi-optical grills [5]. In the latter structures the
excitation of the plasma lower-hybrid wave is produced by
means of the scattering of a radiofrequency beam by a grating
of conducting rods, with a drastic reduction in dissipation and
complexity of the coupling structure.

The analysis of the coupling of a plane wave, propagating
in a vacuum, with a lower hybrid plasma wave by means
of a quasi-optical grill, for nuclear fusion purposes, has been
tackled with different techniques [3], [5]–[7], giving results in
agreement especially for single-line gratings.

In a previous paper [6] we studied the scattering problem of
a plane wave by a set of perfectly conducting circular cylinders
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Fig. 1. Geometry of the scattering problem.

placed close to a plasma interface. We presented a full-wave
solution and gave numerical results for the case of a constant-
density plasma, which is simpler from a numerical point of
view [8], [9], though important to have estimates of the cou-
pling parameters. In this paper, we intend to extend the results
presented there to the case of a linearly-increasing plasma
density, which represents a more realistic model [9], [10].

The general lines of the method, briefly recalled in
Section II, closely follow those of [6] and [11]. The
main novelty presented here, i.e., the treatment of a
linearly-increasing plasma density, is made possible by the
development of fast and accurate integration methods for
the highly oscillating functions involved in the problem. In
Section III numerical results are presented, compared with
those obtained for the case of a constant-density plasma, while
future developments and conclusions are briefly discussed in
the last section.

II. THEORETICAL ANALYSIS

A. Solution of the Scattering Problem

The problem under investigation is the scattering of an
electromagnetic, linearly polarized plane wave, with wave-
vector , impinging on a group of perfectly conducting
parallel cylinders placed near a plane plasma surface, parallel
to the cylinders (see Fig. 1). is the angle between the
wavevector and the direction perpendicular to the surface,
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and thus is related to through the expressions

(1)

where the symbols and refer to the parallel and orthogonal
component of a vector with respect to the interface, respec-
tively. The interface is described by its complex reflection
coefficient , where , being the
wavevector of a typical plane wave impinging on the surface
and the vacuum wavenumber. The structure is assumed
to be infinite in the direction, so that the problem can be
considered as two-dimensional. Since the toroidal confinement
magnetic field inside the plasma is assumed to be parallel
to the -axis, the linear polarization with the magnetic vector
parallel to the axes of the cylinders (polarization) has been
chosen to properly launch a lower hybrid slow wave [2]. In
the following, for brevity, dimensionless coordinates

will be used. Let be
the position vector of the axis of theth cylinder in the main
reference frame (MRF from now on) and

be the typical position vector in the frame
centered on that cylinder (RF from now on). It is convenient
to choose the -axis of MRF lying on the plasma surface.

To obtain the solution in the absence of the interface [12],
it is customary to expand the diffracted field in terms of
cylindrical functions, each one given by the product of the
Hankel function of integer order times the angular factor

. The expansion coefficients can be determined by
imposing the electromagnetic boundary conditions on the
conducting cylinders: to this aim it is convenient to express
the field in terms of cylindrical functions centered on the axes
of the cylinders.

In the presence of a plane surface, owing to the various
geometrical features of the interacting waves and bodies, the
imposition of the boundary conditions is a quite difficult task.
In particular, since the reflection properties of a plane of
discontinuity for the electromagnetic constants are generally
known for incident plane waves [12], to obtain the rigorous
solution it is essential to use the analytical plane-wave expan-
sion of the above mentioned cylindrical functions [13]. In the
following of the present subsection we give a brief report of
the analysis developed in [11].

It is convenient to express the magnetic field as the
sum of the following fields:

• : field of the incident plane wave;
• : field due to the reflection of by the plane surface;
• : field scattered from the cylinders;
• : field due to the reflection of by the plane surface.

By using the expression of a plane wave in terms of Bessel
functions of the first kind [14], for the incident field we get

(2)

where is the amplitude of the incident plane wave and
are polar coordinates inRF . Equation (2) represents

the incident field evaluated at the point having coordinates
in MRF as a function of the coordinates in RF .

With a similar procedure, the field takes the form

(3)

where denotes the propagation angle of the reflected
plane wave.

The field is given in terms of a superposition of
cylindrical functions weighted with unknown coefficients

, i.e.,

(4)

where is the cylindrical function

(5)

and is the outgoing Hankel function [14].
After some algebraic manipulations, we can write as

follows:

(6)

The interaction between theth and th cylinders is con-
tained in the term of (6), which is
a consequence of Graf’s formula [14], giving the expression
of a cylindrical wave emitted by theth cylinder in the
RF . When all cylinders can be considered as noninteracting,
due to the vanishing of the interaction term, the field (6)
reduces to the superposition of fields evaluated by means
of the classical formula for an isolated cylinder [12]. For
example, this happens when the mutual distances between
the cylinders are large enough, owing to the behavior of the
Hankel functions [14].

The last term can be obtained starting from (4) and in-
troducing the plane-wave spectrum of the cylindrical functions
(5), defined as

(7)
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In [13] and [15] the analytical expression of the function
was derived, yielding

arccos

(8)

By the knowledge of the spectrum , the field
takes the form

(9)

where the function is

(10)

Equation (9) shows that can be thought of as the super-
position of the fields diffracted by “image” cylinders centered
at the points , for . These fields are
modulated by the presence of the interface [see (10)].

Finally, by using (9) and (10), it is possible to show that
can be expanded in as follows:

(11)

If the cylinders were far enough from the plasma surface, the
field (11) could be neglected. This is taken into account by
the fact that the functions vanish for large values
of the first argument, as can be seen starting from their
definition [see (10)]. In the following, however, due to the
small distance between plasma and scatterers, we will not use
such an approximation.

Once all the contributions to the total field have been written
in , we can easily impose the boundary conditions, which,
on each cylinder surface, assume the form

(12)

By substituting from (2), (3), (6), and (11) into (12), after
some algebra we obtain the following linear system for the
unknown coefficients

(13)

where

(14)

(15)

Fig. 2. Behavior of the plasma density.

(16)

and the function is defined as

(17)

where the prime denotes derivation.

B. The Reflection Coefficient

The external layer of a tokamak plasma is quite well
approximated by a cold plasma of a linearly increasing density
[2], [8], [9]. Therefore, with reference to Fig. 2, we assume
the following functional form of the electron density :

(18)

where accounts for a possible density discontinuity and
is the density increase for normalized unit length.

In order to calculate the reflection coefficient of the plasma
surface, it is important to know the plasma admittance [6]

(19)

Once this admittance is known, the reflection coefficient
is determined by means of the following [6]:

(20)

where

(21)

is the normalized plasma admittance and is the vacuum
admittance.

To evaluate we start from the wave equation for the
electric field component in the plasma , i.e., [2], [8]

(22)
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where is the cutoff density of the plasma [8]. The magnetic
field component is deducible from the following:

(23)

and is therefore known once is available.
assumes different expressions in the two ranges

, i.e., a homogeneous incident wave on the vacuum
side, and , corresponding to an evanescent incident
wave on the vacuum side. Therefore, we consider each case
individually.

Homogeneous Incident Waves: . Equation (22) can
be written as

(24)

where

(25)

is a negative quantity because must be greater than
to allow propagation of the lower hybrid plasma wave. By
introducing the quantities

(26)

(27)

(24) turns into

(28)

where

(29)

Equation (28) is the Airy equation. Its general solution may be
written as a linear combination of the two independent Airy
functions , , as follows [16]:

(30)

and being two complex constants. By recalling the rela-
tionship between and the spatial coordinate[see (26)] and
considering that

(31)

we note that must vanish in order to obtain physically
significant solutions. Therefore, in particular, we get

(32)

and, from (23)

(33)

where

(34)

By using (32) and (33) together with (19) and (21), the
following normalized plasma admittance is obtained:

(35)

Evanescent Incident Waves: . In this case (22)
turns into

(36)

By proceeding as in the previous case we get the Airy equation
in the following form:

(37)

provided that in (26) is now defined as

(38)

Owing to the positive sign in front of the second term in (37),
we have to consider solutions of the form

(39)

In order to determine the constantsand , it is useful to
consider at very large values. In this limit the Airy
functions can be substituted by their asymptotic expansions
[16] allowing us to write

(40)

To obtain from the previous equation a pure plane wave, we
have to choose the ratio equal to . Consequently

(41)

It is possible to remove the ambiguity in the sign of by
computing the component, say , of the Poynting vector
relevant to the field (40).
After some algebra we achieve the following:

(42)

where denotes the imaginary part. By choosing
, is positive and the real power flow is in the positive

direction, corresponding to a net energy transmission from
vacuum into the plasma. Therefore, the field (39) must be of
the form

(43)

We note that this choice corresponds to a negative phase
velocity [see (41)] and then the wave is backward [17]. Conse-
quently, the relevant normalized plasma admittance turns out
to be

(44)

where has the expression (34) andis given in (38).
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Fig. 3. Plot of j�(nk)j; n0=nc = 2; f = 10 GHz.

Fig. 4. Phase of�(nk); n0=nc = 2; f = 10 GHz.

The reflection coefficient in (20) assumes different forms in
the aforementioned two ranges. In particular, when
we have to use (35) for, while for (44) holds.

By considering the limit of small values, the present ap-
proach gives the following result for the reflection coefficient:

(45)

This expression coincides with that obtained for a constant
density plasma [6], [9], as expected.

In Fig. 3 several plots of are shown. The curves
refer to a density ratio . All the graphs reported
in the following present several curves, referring to different

values in the range m , m .
As expected, for , giving total reflection for

Fig. 5. Single-layered quasi-optical grill.

a homogeneous wave propagating in a vacuum. Moreover, as
decreases, the behavior of approaches the value

predicted by the constant-density model [see (45)].
In Fig. 4 several plots of the phase of are shown for

the same values as before. As , the phase approaches
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Fig. 6. Coupled power spectra for the structure of Fig. 5 for different values ofk0� andN = 20, k0a = 0:85, k0L = 0:25, ' = 45�, n0=nc = 2,
k0d = 2:9, and f = 10 GHz.

, matching the constant-density model results. Details on
the computation of are given in the Appendix.

III. N UMERICAL RESULTS

In this section we make reference to the structure analyzed
in [6], [18], and [19]. First, we give some results pertinent to
the layout shown in Fig. 5: a single-layer quasi-optical grill of
perfectly conducting circular cylinders placed in front of the
plasma surface.

Fig. 6 shows the obtained coupled-power spectra for differ-
ent values of the density slope . It can be seen that the
peak value of the 1 order increases on decreasing and
for m the spectrum is practically coincident
with that obtained in the case of a constant-density plasma
(see [6, Fig. 4]). From a quick sight to the spectra shapes
we expect a worsening of the coupling parameters when the
density slope increases, as will be confirmed by the results we
are going to present.

In Fig. 7 we report plots of the reflected power [6] as a
function of the number of cylinders in the grill for different
density slopes. As expected, when the density slope increases,
the coupling is seen to become worse, and approaches the re-
sults given in ([6, Fig. 5]) when is less than m .

In Fig. 8, the directivity, defined as the ratio between the
power coupled for negative values of and the total coupled
power, is plotted versus for several values. Also in
this case the results are consistent with those in [6] for the
case and become worse for increasing slopes. The
dependence of both the coupling parameters on the plasma
density for an array of cylinders is reported in Figs. 9
and 10, respectively.

A different layout, consisting in a layer of pairs of contacting
cylinders, is sketched in Fig. 11. For this structure we present,
in Figs. 12 and 13, curves of reflected power and directivity

Fig. 7. Reflected power (%) versus number of cylindersN ; k0a = 0:85,
k0L = 0:25, ' = 45�, n0=nc = 2, k0d = 2:9, andf = 10 GHz.

Fig. 8. Directivity (%) for the same case of Fig. 7.

versus the tilting angle . Analogous comments as for the
previous Figs. 7 and 8 apply in this case.
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Fig. 9. Reflected power (%) versus normalized densityn0=nc; N = 10,
k0a = 0:85, k0d = 2:9, k0L = 0:25, ' = 45

�, andf = 10 GHz.

Fig. 10. Directivity (%) versusn0=nc. The other parameters are the same
as in Fig. 9.

Fig. 11. Array of pairs of cylinders.

A more efficient configuration has been proposed in [18] and
[19] for a Gaussian beam illumination and a constant-density
plasma. A consistent analysis for that configuration and for
a plasma density of the kind considered in this paper can be
performed once an incident Gaussian beam is assumed. This
problem is an extension of the present method and its analysis
is in progress.

IV. CONCLUSIONS

In this paper, we have shown the effects of a quite realistic
model for the external layer of a thermonuclear plasma on the
coupling parameters (reflected power and directivity) when
a quasi-optical grill of conducting circular cylinders is used

Fig. 12. Reflected power (%) versus� of an array of ten pairs of cylinders,
k0a = 0:85, k0d = 2:9, k0L = 0:25, ' = 25

�, n0=nc = 2, f = 10 GHz.

Fig. 13. Directivity (%) versus� for the same case of Fig. 12.

to launch lower-hybrid slow plasma waves. Such a model
considers that the electron density, versus the distance from the
plasma surface, behaves like a step followed by a linear ramp.

The analytical and computational difficulties arisen, with
respect to the constant-density case, have been discussed and
overcome. Numerical results have been presented for the
coupling parameters for various geometrical configurations
and physical parameters. Such results have shown to tend to
the ones pertinent to the constant-density case when the slope
of the ramp tends to zero.

As a general remark, we have found that the performances
of the coupler become systematically worse on increasing the
plasma density slope, so that the values of the coupled power
and directivity are generally lower than those evaluated by
modeling the plasma density as a constant.

The analysis could be extended to the case of an inci-
dent Gaussian beam, representing a more realistic model for
the incident field. This could be performed by means of
a suitable plane-wave representation of the Gaussian beam,
following the lines of [18], [19]. Furthermore, the more
efficient configurations proposed in the latter references could
be profitably analyzed for the case of a plasma with linearly
increasing density, when an incident Gaussian beam is con-
sidered. Finally better performances may be obtained using
a systematic optimization procedure or employing scattering
elements of noncircular cross sections, such as elliptical [9]
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(49)

or rectangular [20], [21] ones. The limits of applicability of
our method do not differ much from the ones given in [2]
where a similar problem was faced for a waveguide grill
launcher. In particular, the effect of the plasma curvature
should be taken into account, adapting the presented model to
the various tokamaks making use of suitable approximations.
Our approach can be easily extended to the case of an
obliquely incident plane wave with respect to the cylinder
axes, and this is the key to generalize the technique to the
case of finite height cylinders by means of a suitable Fourier
expansion (with respect to the-direction).

Finally, as is well known, the plasma density undergoes
random fluctuations which are usually neglected. A future goal
of our work is to include these effects using statistical methods.

APPENDIX

NUMERICAL COMPUTATION OF

The computation of the Airy functions for values of
greater than 10 m can be performed by using their relation
with the Bessel functions of fractional order or, alternatively,
their expansion in ascending series [16]. These techniques
are very efficient and their implementation does not present
numerical difficulties.

For smaller values of , the asymptotic expansions of,
, , and may be used [16]. However, such expansions

give rise to loss of precision in the limit . Nevertheless,
it is important to verify that in such limit the linear density
plasma model results match those obtained for the constant
density one. To this aim, it is possible to obtain different forms
for (35) and (44), which allow an easy and fast computation of
the function for very small values of . In particular,
we note that

(46)

Thus, the asymptotic form for with approaching zero
may be obtained from the expansion of (35) and (44) for large
values of . It is useful, therefore, to express (35) and (44)
as functions of only. From (27), (34), and (38), in both
cases and , we get

(47)

Substituting (47) into (35) and (44), we obtain

(48)
By using the asymptotic expansions of the Airy functions [16]
for large arguments, (48) in the limit , turns into (49)

shown at the top of the page where

(50)

and

(51)

By substituting the values of (49) into (20) the expressions of
the reflection coefficient are easily obtained. Numerical
tests have proved that this procedure is very efficient, accurate,
and reliable in a wide range of values.
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