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Abstract—An analysis of quasi-optical grills for lower-hybrid

waves for heating and current drive purposes is presented. . (S8

The tokamak plasma density versus the abscissa entering the - P 8
plasma is assumed to behave like a step and a subsequent / ¢ !
ramp. The study is performed by means of a two-dimensional =

formulation employing cylindrical waves. A detailed numerical

analysis is presented, which allows us to show results for different

configurations useful in practical cases and comparisons with the R
constant-density case. O,
y ) e‘ 7\ | Vs
Index Terms—Cylinders, cylindrical arrays, electromagnetic
coupling, electromagnetic launching, electromagnetic scattering, S
plasma heating, plasma waves. K o P,
I. INTRODUCTION Ao

S is well known, mechanisms currently used to couple

radiofrequency radiation to lower-hybrid plasma waves
for heating and current-drive purposes make essential use of
evanescent waves [1]. Waveguide grills [2] are presently tR@. 1. Geometry of the scattering problem.
most widely used devices in toroidal plasmas, due to the very

high flexibility regarding both the launched spectrum and thg, e close to a plasma interface. We presented a full-wave
antenna directivity. However, thousands of waveguides a§j tion and gave numerical results for the case of a constant-
needed for.next—step devices _(Ilke Ipternauona] Theormon&énsity plasma, which is simpler from a numerical point of
clear Experimental Reactor) with obvious handling problemg;q,, [8], [9], though important to have estimates of the cou-

In recent years, many alternative solutions have been P g harameters. In this paper, we intend to extend the results
posed and developed to simplify the layout and the operaligfbsented there to the case of a linearly-increasing plasma

of the coupling structure. Among them, we recall the multiyengity which represents a more realistic model [9], [10].
junction [3], which subsequently gave rise to the hyperguide rhe" general lines of the method, briefly recalled in
[4], and the quasi-optical grills [S]. In the latter structures thggction Il, closely follow those of [6] and [11]. The
excitation of the plasma lower-hybrid wave is produced by, novelty presented here, i.e., the treatment of a

means of the scattering of a radiofrequency beam by a graﬁlﬂ%arly-increasing plasma density, is made possible by the
of Condu.cting rods, With.a drastic reduction in dissipation arHjeveIopment of fast and accurate integration methods for
complexity of the coupling structure. _the highly oscillating functions involved in the problem. In

_ The analysis of the coupling of a plane wave, propagatitgsction |1I numerical results are presented, compared with
in a vacuum, with a lower hybrid plasma wave by meang,se obtained for the case of a constant-density plasma, while

of a quasi-optical grill, for nuclear fusion purposes, has begiy,re developments and conclusions are briefly discussed in
tackled with different techniques [3], [5]-[7], giving results iny o |ast section.

agreement especially for single-line gratings.
In a previous paper [6] we studied the scattering problem of
a plane wave by a set of perfectly conducting circular cylinders

Il. THEORETICAL ANALYSIS
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and thusk’ is related toy through the expressions where H, is the amplitude of the incident plane wave and
‘ (pt,¥) are polar coordinates iRF;. Equation (2) represents
kﬁ = kosin ¢ the incident field evaluated at the point having coordinates
ki = ko cos @ 1) (&, ¢) in MRF as a function of the coordinatéé;, ¢;) in RF,.

With a similar procedure, the fiel#, takes the form

where the symbol§ and_L refer to the parallel and orthogonal . ( Z) (_; P sy i 0)
component of a vector with respect to the interface, respe?:{-”(g’ ¢) = Hol'{n ) exp{—inl & +inj;

tively. The interface is described by its complex reflection % exp(—inié’t +in|i|é})

coefficient'(n)), wheren = (ny,n)) = k/ko, k being the ‘ ‘ ‘

wavevector of a typical plane wave impinging on the surface = Hol'(n}) exp(—inﬂ_ﬁto + inﬂé}o)

and ko the vacuum wavenumber. The structure is assumed oo

to be infinite in they direction, so that the problem can be % Z ™ exp(—im@) Jm(pr) exp(emdy)  (3)

considered as two-dimensional. Since the toroidal confinement
magnetic field inside the plasnid is assumed to be parallel )
to the ¢-axis, the linear polarization with the magnetic vectof/Nereg = = —¢ denotes the propagation angle of the reflected
parallel to the axes of the cylinder& (polarization) has been Plane wave. _ N
chosen to properly launch a lower hybrid slow wave [2]. In The field 7q is given in terms of a superposition of
the following, for brevity, dimensionless coordinates: ko, cylindrical functions weighted with _unknown coefficients,,
¢ = koz will be used. Letp? = (¢2,¢%) (t =1,---,N) be (8 =L Nym =0,+£1,42--), e,
the position vector of the axis of thgh cylinder in the main N +oo
reference fram€O&() (MRF from now on) andp; = (&:,¢:)  Hy(&,¢) = Ho Z Z ™ exp(—imp)csm CWn (&5, Cs)
(t = 1,---,N) be the typical position vector in the frame o R —.
centered on that cylindeRg; from now on). It is convenient 4)
to choose the&-axis of MRF lying on the plasma surface. ] o )

To obtain the solution in the absence of the interface [12¥here CWn,(&5,¢;) is the cylindrical function
it is customary to expand the diffracted field in terms of ) g
cylindrical functions, each one given by the product of the OWn(&e:G) = Hy (pa) exp(im,) ®)
Hankel function of integer order times the angular factofng gV is the outgoing Hankel function [14].
exp(zm?) The eXpanSion coefficients can be determined byAfter some a|gebraic manipu'atioﬂs7 we can W% as
imposing the electromagnetic boundary conditions on thglows:
conducting cylinders: to this aim it is convenient to express oo
g}et::sli;ﬂr;[ggpss. of cylindrical functions centered on the axg_ﬁi(g’ ¢) = Ho Z Ton(pe) explimds)

m=—0o<

m=—0o<

In the presence of a plane surface, owing to the various N 4o
geometrical features of the interacting waves and bodies, the v Z Z i exp(—ilp) et
imposition of the boundary conditions is a quite difficult task.
In particular, since the reflection properties of a plane of

s=1l{l=—o0

(1)
discontinuity for the electromagnetic constants are generally X |COW (ot Cot)(1 — 8at) + 5St5émHm—(pt) .
known for incident plane waves [12], to obtain the rigorous Im(pt)
solution it is essential to use the analytical plane-wave expan- (6)

sion of the above mentioned cylindrical functions [13]. In the ) ) ) .
following of the present subsection we give a brief report of The interaction between theth andith cylinders is con-

the analysis developed in [11]. tained in the ternCW,_,,, (54, (1) (1 — 6“? pf (6), which is .
It is convenient to express the magnetic fié{g,, as the @ consequence of Graf's formula [14], giving the expression
sum of the following fields: of a cylindrical wave emitted by theth cylinder in the

RF;,. When all cylinders can be considered as noninteracting,

due to the vanishing of the interaction term, the field (6)

. H,: field scattered from the cylinders: reduces to the superposition &f fields evaluated by means
of the classical formula for an isolated cylinder [12]. For

* Hg,: field due to the reflection dft; by the plane surface. : ;
¢ a By P e>1ample, this happens when the mutual distances between

By using the expression of a plane wave in terms of Bes . . .
functions of the first kind [14], for the incident field we get Sf:ng;nfﬂifﬂ:r:z l[irf]e enough, owing to the behavior of the

0 0 . . The last tern,,. can be obtained starting from (4) and in-
Hi(€,¢) = Hoexp (Z”Lgt + "”IIQ) exp (Z”Lgt + 'L”IIQ) troducing the plane-wave spectrum of the cylindrical functions

* H;: field of the incident plane wave;
* 'H,.: field due to the reflection of; by the plane surface;

4 ‘ oo (5), defined as
= Hoexp (mié}o + inlzl C,O) E i"™ exp(—ime) .
e Ey ; = CW,, s —q dce. 7
X JIm(pr) exp(imid;) ) (&) /700 (& Qexp (—iny¢) d¢. (7)
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In [13] and [15] the analytical expression of the functibp,
was derived, yielding ne(8)

Frn(g, nll) = M eXp(—imarCCOQH), /
ny
n) € (=00, +00). (8) e

By the knowledge of the spectruifi,,(&,n)), the field H,,
takes the form

a6 =0 S i expl-imp) - :
(&, ()= 1" exp(—imy) Csm
¢ 0 S—1 e —oo Fig. 2. Behavior of the plasma density.
X RWm(2Xs =&, CS) 9)

where the functiolRW,,,(£,¢) is Bl = —i™exp (inﬁCtO)an(kOGt)

1 +oo . % i #0 .

RW,,.(€,¢) = 2_/ () B (€, ny) expling ) dny). [exp(t?é}) epr( imgw) o
T ) oo (10 + F(n”) exp(—in' &) exp(—ime)]  (16)

) and the function,,(p) is defined as
Equation (9) shows thak,,. can be thought of as the super-

position of the fields diffracted by “image” cylinders centered Gonlp) = (17)
at the points(—¢2,¢9), for s = 1,---, N. These fields are m\P HY (p)
modulated by the presence of the interface [see (10)].
Finally, by using (9) and (10), it is possible to show thathere the prime denotes derivation.
‘Ha- can be expanded iRF; as follows:

B. The Reflection Coefficient

—+oo
Har(€,¢) = Ho Z T (pr) exp(imidy) The external layer of a tokamak plasma is quite well
m=—00 approximated by a cold plasma of a linearly increasing density
N +oo [2], [8], [9]. Therefore, with reference to Fig. 2, we assume
XY it exp(—ilp) cu the following functional form of the electron density (¢):
s=1{=—00
X BW o (xe 30— ). (1) n©={0 4 ae £50 (18)

I.f the cylinders were far enough fr_o”? the plas_ma surface, tWhereno accounts for a possible density discontinuity akd
field (11) could be neglected. This is taken into account tfg the density increase for normalized unit length.

the fact_that theRW ¢, functions vanish for I_arge values . In order to calculate the reflection coefficient of the plasma
of the first argument, as can be seen starting from th<=s|r

- i urface, it is important to know the plasma admittance [6
definition [see (10)]. In the following, however, due to the P P [6]
small distance between plasma and scatterers, we will not use HYNE = 05my)
such an approximation. Yoi(ng) = T — 0omy)

Once all the contributions to the total field have been written i I
in RI";, we can easily impose the boundary conditions, whictynce this admittance is known, the reflection coefficieft; )

. (19)

on each cylinder surface, assume the form is determined by means of the following [6]:
Op Hiot| pmhga, =0 (t=1,---,N). 12 1—n(n
o Hiot| pr=ko ( ) (12) F(n“) _ 1+77En||; (20)
By substituting from (2), (3), (6), and (11) into (12), after i
some algebra we obtain the following linear system for thghere
unknown coefficients
_ Y;’I(TLH) 1 2 21
AR m=0,41,42, ) = =5 7 @
> Y ate=sn (BIVEV) v
1 f= oo - is the normalized plasma admittance a¥igdis the vacuum
admittance.
where To evaluatel},(n ) we start from the wave equation for the

o . L
Aty = exp(—ilp) { [OW tm(€ats Cat) (1 — 82z) electric field component in the plasndd’, i.e., [2], [8]

+ L4 | G (Koar) + 65060m } (14) 9*EP(E) <1 _ ”e(§)> 1—n2)ePl(e) = 0 22
L' =RW, (xs +x1, ¢ — ¢7) (15) ae ne (1=np)e©) (22)
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wheren, is the cutoff density of the plasma [8]. The magnetiBy using (32) and (33) together with (19) and (21), the

field c:omponenf]—lg1 is deducible from the following: following normalized plasma admittance is obtained:
WYy  OEPY(E) (AN —176 Ai'(wo)
HEV(g) = 209 23 np)=—i{ — ) (I-nj) oS (85
and is therefore known onc&! is available. uri\;air:ﬁscem Incident Wavegay | > 1. In this case (22)
Ypl(n”) assumes different expressions in the two rangés b
Iny| < 1, i.e., a homogeneous incident wave on the vacuum 9*EP(E) 2 A eerlisy — o 36
side, and|n)| > 1, corresponding to an evanescent incident o¢? + (7 )nc (€= =0 (39
ﬂz\i/\/&;dzgllt;e vacuum side. Therefore, we consider each C%?/eproceeding as in the previous case we get the Airy equation
Homogeneous Incident Wavegy| < 1. Equation (22) can in the following form:
. 2
be written as d F(;U) +wF(w) = 0 (37)
82851(5) 2 A pl _ dw
0E2 - (1 - ”Il)n_c(g —&)E(§) =0 (24) provided thaty in (26) is now defined as
where v = a (nﬁ -1) >0. (38)
e
=22 ™0 25)
S = A <9 ( Owing to the positive sign in front of the second term in (37),

. . . we have to consider solutions of the form
£, is a negative quantity becausg must be greater than.

to allow propagation of the lower hybrid plasma wave. By F(w) = aAi(—w) + bBi(—w). (39)

introducing the quantities ) o
In order to determine the constantsand b, it is useful to

w=~Y3¢E—€)>0 (26) considerePl(¢) at very large¢ values. In this limit the Airy

A 9 functions can be substituted by their asymptotic expansions
7= n_c(l - ”ll) >0 (27) [16] allowing us to write
(24) turns into EPNE) = F(w) ~ 77/ 2w Y4
a s s
2 X |=sin{w+—)4cos{w+—)|. 40
aaF(;“”) — wF(w) =0 (28) [b ( 4) ( 4)} (40)
w
To obtain from the previous equation a pure plane wave, we
where have to choose the ratio/b equal to+i. Consequently
F(w) = EM'(yPw+ &) (29) EPN(E) ~ ™20 Vb exp [ii (w + %)} (41)

Equation (28) is the Airy equation. Its general solution may q?
written as a linear combination of the two independent AirX
functions Ai(w), Bi(w), as follows [16]:

is possible to remove the ambiguity in the signa® by
omputing theé component, say’:, of the Poynting vector
relevant to the field (40).

F(w) = aAi(w) + bBi(w) (30) After some algebra we achieve the following:
1/3
a and b being two complex constants. By recalling the rela- P = iY0<é> (1- nﬁ)_Q/ghn(a*b) (42)
tionship betweenv and the spatial coordinate[see (26)] and 2m Ne
considering that wherelm(-) denotes the imaginary part. By choosiagh =
—i, P% is positive and the real power flow is in the positive
wlgréo Bi(w) = 4+ (31) ¢ direction, corresponding to a net energy transmission from

vacuum into the plasma. Therefore, the field (39) must be of

we note thatb must vanish in order to obtain physicallythe form

significant solutions. Therefore, in particular, we get 81‘1(5) — a[Ai(—w) + iBi(—w)]. (43)

EPY(0) = aAi(w) (32) We note that this choice corresponds to a negative phase

velocity [see (41)] and then the wave is backward [17]. Conse-

and, from (23) quently, the relevant normalized plasma admittance turns out
to be

Hgl(o) = ta¥y <£> B (1 - 7‘L|2|) _2/3Ai/(w0) (33) A 1/3 -1/6 Ai/(—wo) + iBi/(—wo)
n(ny) = <—> (1—mny)

e
Ai(—wo) + LBI(—wO)
where (44)

wo = we—o = -3¢, > 0. (34) wherew, has the expression (34) andis given in (38).
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Fig. 4. Phase off'(n), no/n. = 2, f = 10 GHz.

The reflection coefficient in (20) assumes different forms in
the aforementioned two ranges. In particular, whej < 1
we have to use (35) fof, while for |n| > 1 (44) holds.

By considering the limit of small\ values, the present ap-
proach gives the following result for the reflection coefficient:

R (45)

gtt;. 5. Single-layered quasi-optical grill.

This expression coincides with that obtained for a constallzf{
density plasma [6], [9], as expected.

In Fig. 3 several plots ofl'(n))| are shown. The curvesa homogeneous wave propagating in a vacuum. Moreover, as
refer to a density rationg/n. = 2. All the graphs reported A decreases, the behavior gf| approaches the valu@|
in the following present several curves, referring to differemredicted by the constant-density model [see (45)].
koA values in the ranggpA € [2x 101¥ m~4,2x 102 m~4]. In Fig. 4 several plots of the phase bf» ) are shown for
As expected|I'| = 1 for |n)| < 1, giving total reflection for the same values as before. BgA — 0, the phase approaches
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Fig. 6. Coupled power spectra for the structure of Fig. 5 for different valuds &f and N = 20, koa = 0.85, koL = 0.25, ¢ = 45°, no/n. = 2,
kod = 2.9, and f = 10 GHz.

7 /2, matching the constant-density model results. Details on
the computation of’(n|) are given in the Appendix.

kA2 107 m?
a0 v i ! il P i
& k=1 10¥m”

I kA=210"m*

I1l. NUMERICAL RESULTS

(%)

Kk A=210"m*

In this section we make reference to the structure analyzegl 85 D A
in [6], [18], and [19]. First, we give some results pertinent ton%_ ] fM;+FHM

the layout shown in Fig. 5: a single-layer quasi-optical grill ofg el
perfectly conducting circular cylinders placed in front of the® ek h“iﬁ:ﬁ:-/-/ws'

plasma surface. 5 »

Fig. 6 shows the obtained coupled-power spectra for differ-
ent values of the density slopgA. It can be seen that the
peak value of the-1 order increases on decreasiig\ and B o
for koA < 2x10'® m—* the spectrum is practically coincident )
with that obtained in the case of a constant-density plasma
(see [6, Fig. 4]). From a quick sight to the spectra shap%@Ll O'Eff'iththE‘jW:; /(:l/‘i) versus d”“_m;’gr gfnjﬁ"id??é‘ﬁz‘ 0.85,
we expect a worsening of the coupling parameters when
density slope increases, as will be confirmed by the results we
are going to present.

In Fig. 7 we report plots of the reflected power [6] as a
function of the numbetV of cylinders in the grill for different | [—*—xka=102m*
density slopes. As expected, when the density slope increas% 80 | | a-210 " m
the coupling is seen to become worse, and approaches the lse- I
sults given in ([6, Fig. 5]) whekoA is less thar2 x 103 m

In Fig. 8, the directivity, defined as the ratio between th
power coupled for negative valuesof and the total coupled
power, is plotted versu®v for severalkoA values. Also in
this case the results are consistent with those in [6] for the
casekoA = 0 and become worse for increasing slopes. The 70
dependence of both the coupling parameters on the plasma
density for an array oV = 10 cylinders is reported in Figs. 9
and 10, respectively. Fig. 8. Directivity (%) for the same case of Fig. 7.

A different layout, consisting in a layer of pairs of contacting
cylinders, is sketched in Fig. 11. For this structure we presemgrsus the tilting anglex. Analogous comments as for the
in Figs. 12 and 13, curves of reflected power and directivigyrevious Figs. 7 and 8 apply in this case.

TRefl

85 ' ' f ' f ' !

T kA=2 10¥m*

—®—kA=210"m*

7

N

DifBetivit
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1 1.5 2 2.5 3 35 4 4.5 5  Fig. 12. Reflected power (%) versusof an array of ten pairs of cylinders,
no/n koa = 0.83, kod = 2.9, koL = 0.25, o = 25°, ng/n. = 2, f = 10 GHz.
c
Fig. 9. Reflected power (%) versus normalized densigyn.; N = 10, 80
koa = 0.85, k‘od =29, kL = 0.25, p =45°, and f = 10 GHz.
95
— -
90 o kA=2100m? o
8 —e—k A=1 10® m* & N
[V
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- 75 5 —o kA=2 107 m" L
S B ook A=210"m™* o
2 70 o 5 —e—k A=1 10® m*
- 0
o 65 L
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o 60
ax - Wk A=2 10" m*
55 o
- 70 —— b : — —F
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45 - -— o [deq]
1 15 2 2.5 3 3.5 4 4.5 5
n/n Fig. 13. Directivity (%) versusy for the same case of Fig. 12.
c

Fig. 10. Directivity (%) versusig/n.. The other parameters are the same )
as in Fig. 9. to launch lower-hybrid slow plasma waves. Such a model

considers that the electron density, versus the distance from the
plasma surface, behaves like a step followed by a linear ramp.

The analytical and computational difficulties arisen, with
respect to the constant-density case, have been discussed and
overcome. Numerical results have been presented for the
coupling parameters for various geometrical configurations
and physical parameters. Such results have shown to tend to
the ones pertinent to the constant-density case when the slope
of the ramp tends to zero.

As a general remark, we have found that the performances
of the coupler become systematically worse on increasing the
r%atsma density slope, so that the values of the coupled power

A more efficient configuration has been proposed in [18] a oo
: : o nd directivity are generally lower than those evaluated by
[19] for a Gaussian beam illumination and a constant-densi . :
odeling the plasma density as a constant.

plasma. A consistent analysis for that configuration and for_l_h nalvsi Id be extended to th £ an inci

a plasma density of the kind considered in this paper can he € analysis cou € exiended fo the case of a e

performed once an incident Gaussian beam is assumed. t Gaussian beam, representing a more realistic model for
3 incident field. This could be performed by means of

problem is an extension of the present method and its anal ) i )
is in progress. a swtgble plan_e-wave representation of the Gaussian beam,
following the lines of [18], [19]. Furthermore, the more
efficient configurations proposed in the latter references could
IV. CONCLUSIONS be profitably analyzed for the case of a plasma with linearly
In this paper, we have shown the effects of a quite realisiitcreasing density, when an incident Gaussian beam is con-
model for the external layer of a thermonuclear plasma on thiglered. Finally better performances may be obtained using
coupling parameters (reflected power and directivity) whemn systematic optimization procedure or employing scattering
a quasi-optical grill of conducting circular cylinders is useélements of noncircular cross sections, such as elliptical [9]

k1

Fig. 11. Array of pairs of cylinders.
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N 2 i(z_f - ) zio(_l)kckzgk |7’L||| <1 40
77(7’L||) ~ L(n_o - )Zig(_l)%d%%—%"'i Ziozo(_l)zk+1d2k+lzg(2k+1> | > 1 (49)
wokme TS TE (C1)eazg iy (CDP eagazg O
or rectangular [20], [21] ones. The limits of applicability ofshown at the top of the page where
our method do not differ much from the ones given in [2] 2 39
where a similar problem was faced for a waveguide grill #0 = 3%o (50)
launcher. In particular, the effect of the plasma curvatuggd
should be taken into account, adapting the presented model to
the various tokamaks making use of suitable approximations. {Co =1
. _ (2k+1)(2k+3)--(6k—1)
Our approach can be easily extended to the case of an L = S16F KT (51)
obliquely incident plane wave with respect to the cylinder do=1 =
axes, and this is the key to generalize the technique to the di = _ (6k41) (k=1,2,--).
. . . . . (6k—1)
case of finite height cylinders by means of a suitable Fourier
expansion (with respect to thedirection). By substituting they values of (49) into (20) the expressions of

Finally, as is well known, the plasma density undergoehe reflection coefficient'(n ) are easily obtained. Numerical
random fluctuations which are usually neglected. A future gaasts have proved that this procedure is very efficient, accurate,

of our work is to include these effects using statistical methodsnd

APPENDIX o
NUMERICAL COMPUTATION OF I'(n|)

The computation of the Airy functions for values b§A [2]

greater than 10 m—* can be performed by using their relation
with the Bessel functions of fractional order or, alternatively 3]
their expansion in ascending series [16]. These techniques
are very efficient and their implementation does not preser]
numerical difficulties.

For smaller values of,A, the asymptotic expansions Af,
Ai’, Bi, andBi’ may be used [16]. However, such expansiongs]
give rise to loss of precision in the limik — 0. Nevertheless,
it is important to verify that in such limit the linear density [g]
plasma model results match those obtained for the constant
density one. To this aim, it is possible to obtain different forms,
for (35) and (44), which allow an easy and fast computation o
theI'(n) function for very small values dfoA. In particular,
we note that (8]

iu_r)lo wp = +oo. (46)

Thus, the asymptotic form fdr(r ) with A approaching zero [9]
may be obtained from the expansion of (35) and (44) for large
values ofwy. It is useful, therefore, to express (35) and (44[)10]
as functions ofwg only. From (27), (34), and (38), in both

casesln)| < 1 and|n| > 1, we get [11]

(47)
[12]
Substituting (47) into (35) and (44), we obtain [13]
i n Ai, — W
np =4 (i = 1) Sy i<t [14]
- n Al (—wq)+iBi’ (—w, 14
w%)(n_o - 1) AigfwgngiBi((waO)) |”||| > 1.
(48) [19]

By using the asymptotic expansions of the Airy functions [16]
for large arguments, (48) in the limik — 0, turns into (49)

reliable in a wide range ak values.
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