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Modal decomposition of partially coherent flat-topped
beams produced by multimode lasers
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We present a simple mathematical model giving a possible description of a partially coherent light beam
exhibiting a f lat-topped transverse intensity profile. Such a model allows us to deduce the modal distribution
inside a multimode stable optical cavity, assuming that the modes are of the Hermite–Gauss type. The
analytical expression used to represent f lat-topped profiles is of the f lattened Gaussian type and leads to an
exact, closed-form expression for the M 2 factor of the output beam. An analogous procedure could be used
to treat the general problem of deducing the modal distribution inside a laser cavity starting from intensity
measurements of the output beam.  1998 Optical Society of America

OCIS codes: 140.3460, 030.4070.
Inside a multimode optical cavity a light field can
oscillate simultaneously on a multitude of different
transverse modes that, for most practical applications,
can be considered to be oscillating independently of one
another.1 As far as the mutual intensity is concerned,2

this incoherent mode superposition reduces the spatial
coherence of the beam.3 The coherence features of
the beam depend on the functional structure of the
modes and on their strengths, i.e., on the relative
power carried by each of them. The determination
of the modes of partially coherent sources and their
relative weights is a subject of considerable relevance
and interest.4 – 7

In this Letter we consider beams produced by stable
resonators with spherical mirrors whose modes can be
considered to be of the Hermite-Gauss (HG) type.1 We
assume that the parameters of such modes, i.e., the
positions and sizes of their waists, can be deduced
from the geometrical characteristics of the empty reso-
nator.3 On the other hand, the power distribution
of the modes depends on the presence of intracavity
elements and on the working conditions of the laser.

As an example of partially coherent sources ob-
tainable by incoherently superimposing HG beams we
quote the so-called Collett–Wolf (or Gaussian Schell-
model) sources, for which both the intensity profile
and the degree of spatial coherence are Gaussian
shaped.8 In this case the weights of the modes follow
a decreasing exponential law as functions of the order
of the mode.9,10

In the general case one can obtain information about
expansion coeff icients by measurement of the degree of
coherence.11 If the mode structure is known, in princi-
ple the intensity profile of the beam should be enough.
Following these lines, Siegman and Townsend pro-
posed a numerical algorithm, based on a least-squares
optimization procedure, to determine the HG mode dis-
tribution inside a laser cavity, producing a f lat-topped
intensity profile.12 Here we show that such a problem
can be solved analytically by use of a f lattened Gauss-
ian (FG) profile13 – 15 to describe the transverse inten-
sity distribution of the beam.
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The present approach could be extended to other
intensity profiles. In addition, for the present case it
leads to an analytical description of the weights of the
component modes and provides the exact, closed-form
expression for the M2 quality factor of the output beam,
thus giving a complete characterization of its paraxial
propagation features.

We start from the following intensity distribution,
which belongs to the class of FG profiles13,14:
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where N is a positive integer and w0 is a real, positive
parameter. The intensity behavior, as a function of
the normalized variable xyw0, is shown in Fig. 1 for
several values of the parameter N . In that f igure
only the range f0, 1`d is visualized, the function IN
being even. The shape of IN sxd is controlled by two
parameters, w0 and N , related to the width of the
transverse region on which IN is reasonably different
from zero and to the rapidity of the transition from the
maximum value to zero, respectively.

If we consider the distribution in Eq. (1) as arising
from an incoherent superposition of HG beams, we can

Fig. 1. Flattened Gaussian intensity profiles for several
values of N .
 1998 Optical Society of America



314 OPTICS LETTERS / Vol. 23, No. 5 / March 1, 1998
write
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where ln
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Fnsxd are the normalized HG functions,1 i.e.,
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where Hn is the nth-order Hermite polynomial16 and v0
is the spot size. To ensure that Eq. (2) coincides with
Eq. (1), we f irst have to require that the arguments of
the exponentials be equal to each other, i.e., that
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In the present case the value of spot size v0 is f ixed by
the geometry of the resonator1 and the width of f lat-
topped profile w0 is determined by the transverse size
of the gain medium. As a consequence of Eq. (4) the
value of the order N is f ixed and turns out to be
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where square brackets denote the nearest integer.
With Eq. (4) taken into account, the equality between
Eqs. (1) and (2) requires that
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where, for simplicity, the following quantities have
been introduced:
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Because Hn
2sjd is a polynomial of order n in j2, we

set

Hn
2sjd ­

nX
k­0

pn, kj2k, (9)

where the matrix pn, k sn ­ 0, . . . , N ; k ­ 0, . . . , nd can
be deduced starting from the recurrence properties
of the Hermite polynomials. After some algebra, the
following linear system for the unknown quantities
an

sN d sn ­ 0, 1, . . . , N d is obtained:
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System (10) is upper triangular and can be solved by
means of the following recurrence rule:
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In summary, once the parameters of the FG intensity
profile are fixed, the present algorithm uniquely leads
to the modal distribution ln

sN d sn ­ 0, . . . , N d through
the inversion of a simple linear system.

In Fig. 2 the coefficients ln
sN d, whose values have

been normalized according to the condition
P

n ln
sN d ­

1, are shown for some values of N . Note that a peak
in the distribution is present at a value of n, say,
n̄, that depends on N . More precisely, such a peak
occurs approximately at Ny2, that is, n̄ . sw0yv0d2.
This conf irms the relationship between the f latness
of the beam profile and the presence of a saturable-
gain medium.12 The curve for N ­ 88 is obtained with
v0 ­ 0.15 and w0 ­ 1 and can be compared with the
one in Fig. 4(b) of Ref. 12, where such values of v0
and w0 were used. Such a comparison shows that the
agreement between our results and those of Ref. 12 is
very good.

To provide a more comprehensive characterization of
the output beam, its M2 factor,17 which represents one
of the most used quality parameters, can be evaluated.
In particular, by starting from Eq. (1) and exploiting
the shape-invariance property of the beam18 one can
give M2 a closed form. The determination of such an
analytical expression is not trivial, but for the sake
of brevity we omit it and report only the f inal result,
which turns out to be

M2 ­ 1 1 2Ny3 . (12)

This results shows how the quality of the beam de-
creases when N increases. This means that, as ex-
pected, the f latter the intensity profile of the source,
the wider the spreading angle of the radiated beam.

Furthermore, Eq. (12) could suggest a way to deduce
the modal content of a FG source: By measuring
the spreading angle of the beam radiated by it, one

Fig. 2. Normalized coeff icients ln
sN d for several values

of N .
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can easily evaluate the value of N and completely
determine the modal structure of the source.

In conclusion, we have presented a procedure for re-
trieving the modal power decomposition of a partially
coherent source showing a f lat-topped intensity profile
and whose modes are assumed to be of the HG type.
Such a procedure, for which the sole intensity distri-
bution is needed, can provide analytical expressions
for significant quantities pertinent to the beam’s fea-
tures, such as its M2. Results seem to be consistent
and agree well with those obtained by numerical opti-
mization methods.

The present approach is based on the assumption
that the spot size of the modes is known, and this
is true whenever the physical characteristics of the
laser resonator are given. If such an assumption is not
verified, more-cumbersome coherence measurements
are needed, as shown, for instance, in Ref. 6.

It should be stressed that the proposed algorithm
could be extended to the case of more general intensity
distributions to take account of experimental situa-
tions in which different beam shapes are encountered.
In such cases an analytical description of the modal
distribution and of other relevant quantities could be
useful in laser design or in beam characterization.

The authors are very grateful to Franco Gori and
Anthony Siegman for many stimulating discussions
during the preparation of this work.
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