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Abstract. We give a simple rule to associate a pair of
complex numbers to a spinor. This association rule is
suggested by an analysis of the link between Jones vectors
and the Poincaré sphere, which are tools commonly used in
the description of polarized light, and allows the basic
properties of spinors, such as the effect of rotations, to be
derived in a simple way. In our treatment, we give a purely
mathematical description of spinors, without using the
physical properties of the spin, so that the theory of spinors
can be introduced independently from its application to
physics.

Riassunto. In questo lavoro forniamo una semplice regola
per associare una coppia di numeri complessi ad uno spinore.
Tale regolaè suggerita da un’analisi del legame che sussiste
tra i vettori di Jones e la sfera di Poincaré, strumenti
comunemente usati nella descrizione della luce polarizzata.
Essa consente di derivare in modo semplice le proprietà di
base degli spinori, come ad esempio l’effetto delle rotazioni.
Nella nostra analisi, gli spinori sono descritti da un punto di
vista puramente matematico, senza fare uso delle proprietà
fisiche dello spin; in tal modo la teoria degli spinori può
essere sviluppata indipendentemente dalla sua applicazione
alla fisica.

1. Introduction

The introduction of spin and spinors is one of the most
challenging tasks in an elementary course on quantum
mechanics. Even in the simplest case of spin-1

2 certain
fundamental aspects of this topic, such as the effects of
rotation on spinors, turn out to be difficult to explain.
Very often one makes recourse both to intuition and to
physical constraints in order to derive the transformation
rules. In some cases, it seems that arbitrary choices
are made. As a result the student may be left with the
unsatisfactory feeling that one has to figure out what the
pertinent laws are by a sort of trial and error procedure.
While somehow mirroring the historical development
of the subject, such a continuous interplay between the
physical system and the mathematical model may give
the impression that the latter could not be constructed,
at least in simple terms, without making appeal to the
physical situation.

In order to avoid this state of affairs a clear cut
distinction between construction of the mathematical
tool (elementary spinor theory) and its applications
to physics is useful. Concerning this, some purely
mathematical approaches are present in the literature,
making use of geometrical structures, such as the
isotropic vector [1], the stereographic projection [2] and
the flag picture [3].

In this paper we suggest an approach in which spinors

(of the simplest type) are introduced as a tool for
representing oriented lines in real space using a pair of
complex numbers. The way to do this is suggested by
an analysis of the link between two of the most popular
methods for describing polarized light, namely, Jones
vectors and the Poincaré sphere. Once the convention
for associating spinors to unit vectors of real space is
established, the basic facts of spinor calculus can be
derived in a logical and straightforward way. This
applies to transformation rules under arbitrary rotations,
Pauli matrices and their commutation relations. In this
approach the mathematics of spinors is introduced and
developed without making use of spin properties (except
for the starting motivation). In this way the application
of such a tool to the description of spin appears as a
logically separated step. In this paper, however, we
shall not examine in detail such an application.

2. Jones vectors and the Poincar é sphere

The aim of this section is to underline certain aspects of
Jones vectors and the Poincaré sphere that are useful for
our work. Only an elementary knowledge of these two
tools for representing polarized light is required. Let us
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Figure 1. Light polarization states mapped on a
hemisphere.

recall that a polarized monochromatic plane wave can
be specified by the Jones vector [4, 5].(

E0x eiϕx

E0y eiϕy

)
, (1)

whereE0x and E0y are the amplitudes of thex- and
y-components of the electric field whileϕx andϕy are
the corresponding initial phases. The polarization state
remains unchanged both on multiplyingE0x andE0y by
a common factor and on adding a common angle toϕx
andϕy . As far as the polarization state is concerned, we
can thus reduce the Jones vector to the symmetric form(

Axe−iδ/2

Ay eiδ/2

)
, (2)

whereAx andAy are positive numbers that, through a
suitable choice of units, can be assumed to satisfy the
equality

A2
x + A2

y = 1, (3)

and whereδ can be assumed as varying in the interval
0≤ δ < 2π .

It is noted that a symmetric form as in equation (2) is
not necessary to represent polarization states, because
in such a case one is interested only in the mutual
dephasing between the two components, as already said.
On the other hand, the symmetric choice may have some
important implications in the problems of spinors, as
will be clarified in the following.

Let us now observe that, thanks to equality (3),Ax
andAy can be thought of as the cosine and the sine (or
vice versa) of an angular variable spanning the interval
[0, π/2]. Let us tentatively set

Ax = cosγ, Ay = sinγ, (0≤ γ ≤ π/2).
(4)

At this point it is rather natural to think thatγ
and δ could be taken as the colatitude and longitude,
respectively, of a point on a unit sphere centred at
the origin of a suitable reference frame, sayξ, η, ζ
(of course such Cartesian coordinates should not be
confused with thex, y, z coordinates in the space where

the wave propagates). This leads to the representation
of all possible states of polarization as points on the
upper hemisphere. A few states are shown in figure 1.
Such a representation, however, is slightly odd in that it
does not treatx- andy-polarization on an equal footing.
Indeed, while a linear polarization along thex-axis is
represented by the north pole, a linear polarization along
they-axis corresponds to all the points on the equatorial
line. Since in the latter case the phase differenceδ
between thex- and y-components of the electric field
loses meaning, the only difference among points on the
equatorial line would be the field initial phase, a quantity
we decided to disregard. In order to eliminate this
drawback we have to modify our representation in such a
way that the whole equatorial line collapses into a single
point. This is easily done on replacing equation (4) by

Ax = cos
γ

2
, Ay = sin

γ

2
, (0≤ γ ≤ π).

(5)

The complete expression of a typical Jones vector
now becomes(

cos(γ /2) e−iδ/2

sin(γ /2) eiδ/2

)
, (0≤ γ ≤ π; 0≤ δ < 2π).

(6)

Again usingγ as colatitude andδ as longitude, the set
of points representing possible polarization states covers
the entire surface of the unit sphere. In particular, linear
y-polarization corresponds to the south pole. A few
states are indicated in figure 2. A peculiar feature of
this representation should be noted. States of orthogonal
polarization are imaged onto points at opposite ends
of a diametrical line. This can be seen in general,
but we content ourselves with the self-evident case of
linear polarization (we shall come back to this point in
section 3). If we take the unit vector ending at a typical
point of the sphere as representative of a polarization
state, we can say that our mapping images orthogonal
polarization states onto antiparallel unit vectors. Let us
express the same result in a different form. Since any
polarization state can be represented as a superposition
of two orthogonal states, for example linearx- and y-
polarization, any unit vector in the representation space
can be thought of as the superposition of two antiparallel
unit vectors along an arbitrarily chosen direction, for
example theζ -axis. At first, looking at the sphere in its
three-dimensionalξ, η, ζ space, this seems surprising
because we are accustomed to referring vectors to a
frame of mutually orthogonal axes. On second thought,
however, we realize that this is in fact the most profound
meaning of our representation. Equation (6) can be
read by saying that cos(γ /2) e−iδ/2 and sin(γ /2) eiδ/2

are the ‘components’ along theζ -axis of the unit vector
pointing in the direction (γ, δ).

As is well known, the Poincaré sphere is a classical
way to represent polarization states [4, 5] and usually
its introduction is made through the Stokes parameters,
which are related to the normalized coordinates on the
sphere. The sphere of figure 2 is similar to the Poincaré
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Figure 2. Light polarization states mapped on a sphere.

Figure 3. The Poincaré sphere.

sphere but it is not quite the same. For the sake of
comparison, the Poincaré sphere is drawn in figure 3,
where s1, s2 and s3 are Stokes parameters [4]. It is
seen, for example, that its poles represent states of
circular instead of linear polarization. The reason for
this difference is easily traced. The sphere of figure 2
originates from a representation by Jones vectors of the
form (2) in which the basis vectors are(

1

0

)
,

(
0

1

)
, (7)

corresponding to linearly-polarized fields along the
x- and y-axis, respectively. On the other hand,
any polarized wave can be represented as a suitable
superposition of right- and left-circular-polarized fields.
In this case the basis vectors are [4, 5]

1√
2

(
e−iπ/4

eiπ/4

)
,

1√
2

(
e−i3π/4

ei3π/4

)
. (8)

Starting from this new basis and proceeding as before
we obtain the Poincaré sphere, except for a rotation by
π/2 around theζ -axis.

3. Spinors

The most important motivation for the introduction of
spinors in physics is of course the existence of spin.
To begin with, we recall a fundamental property of
spin-1

2 particles. The measurement of spin along an
arbitrary direction always leads to the results+1 or−1
(in h̄/2 units). According to the principles of quantum
mechanics this requires that any state of the particle
be represented as a suitable superposition of the states
leading to those results. In particular, if we know that
the spin is along a direction having colatitudeϑ and
longitudeϕ with respect to a given framex, y, z, we
should be able to represent it as a superposition of states
in which the spin is in the positive or negative direction
of the z-axis. The two latter states, which are often
briefly called spin up and spin down, are orthogonal.
Physically speaking, this means that they represent
mutually exclusive outcomes. We are now confronted
with the problem of how to represent spin states of
the particle in mathematical terms. In particular, what
type of representation leads to the orthogonality (in a
mathematical sense) ofspin upandspin down?

In view of the remarks made at the end of the previous
section, we easily realize that column vectors of the form
(6) are possible candidates. We shall know explore this
possibility. In this exploration we will not use the spin
and its physical properties.

Let us consider a typical unit vector specified in real
space by colatitudeϑ and longitudeϕ. From now on
we shall simply say the unit vector (ϑ, ϕ). We stipulate
that such a unit vector be associated with the following
mathematical object (of the same form as equation (6))(

cos(ϑ/2) e−iϕ/2

sin(ϑ/2) eiϕ/2

)
, (0≤ ϑ ≤ π : 0≤ ϕ < 2π).

(9)

Such an object will be called aspinor. One may well ask
why we should introduce a new name instead of using
the phraseJones vectoras was done in section 2. To
answer this question we first observe that we are going
to use the arguments of section 2 the other way around.
There, we had, in physical space, a wave described in a
rather obvious way by a Jones vector and we arrived at
a fictitious three-dimensional spaceξ, η, ζ where each
Jones vector was associated to a unit vector (γ, δ). Here,
we start with a physical three-dimensional space and we
try to find a suitable representation of it through objects
of the form (9). It could be objected that we are simply
looking at the same matter from a different viewpoint.
We then remark that such a different viewpoint makes
relevant a question that would not appear the other way.
How does a spinor change when we rotate the reference
frame in real space? This is an important question. To
understand why, let us recall that an ordinary (three-
dimensional) vector is not just a triplet of real numbers
but an abstract object represented by three numbers or,
which is the same, by its three Cartesian components in
a certain reference frame. The true nature of the vector
is revealed by the transformation laws obeyed by those
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three numbers when the reference frame changes. The
same is true for a spinor. As a mathematical object,
a spinor is specified by its transformation rules under
rotations of the reference frame. It is to find these
rules that the next section is devoted. Before doing this,
however, we need some more preparation. In particular,
we must endow spinors with an inner product. If we
denote two typical spinors by

â =
(
a1

a2

)
, b̂ =

(
b1

b2

)
, (10)

wherea1, a2 andb1, b2 are of the form (9), we define
their inner (or dot) product as

â · b̂ = a∗1b1 + a∗2b2, (11)

where the asterisk denotes complex conjugate. Note
that interchanging the order of̂a and b̂ leads to the
complex conjugate. In particular, two spinors are said
to be orthogonal if̂a · b̂ = 0.

In summary, our definitions are expressed by
equation (9), which will be referred to as the association
rule, and by equation (11), the inner product rule.

We can now control the fact that two opposite unit
vectors on a line lead to orthogonal spinors. Letâ be
the spinor corresponding to the unit vector (ϑ, ϕ). More
explicitly, we have

â =
(
a1

a2

)
=
(

cos(ϑ/2) e−iϕ/2

sin(ϑ/2) eiϕ/2

)
. (12)

We denote byâ− the spinor obtained on passing to
the opposite direction. This amounts to changingϑ into
π − ϑ andϕ into ϕ + π . Using the association rule we
find

â− =
(

cos((π − ϑ)/2) e−i(ϕ+π)/2

sin((π − ϑ)/2) ei(ϕ+π)/2

)
=
(−ia∗2

ia∗1

)
. (13)

On inserting equations (12) and (13) into the inner
product rule (11) we see thatâ · â− = 0.

It will be useful to introduce a special notation for
the spinors corresponding to unit vectors along the
opposite directions on the Cartesian axes of real space.
We denote such spinors bŷx, x̂−, ŷ, ŷ− and ẑ, ẑ−.
On applying the association rule we easily find their
expression:

x̂ = 1√
2

(
1

1

)
, x̂− = −i√

2

(
1

−1

)
, (14)

ŷ = 1√
2

(
e−iπ/4

eiπ/4

)
, ŷ− = 1√

2

(
e−i3π/4

ei3π/4

)
, (15)

ẑ =
(

1

0

)
, ẑ− =

(
0

i

)
. (16)

It can be noted that equation (13) gives, forẑ−, a
result which is not common in the literature, where the

vector ẑ− is generally taken as (0, 1) [6–8]. This is due
to the fact that the angleϕ is indeterminate along the
z-direction (we have arbitrarily setϕ equal to zero). It
could be easily verified that the use of either of the two
spinors would lead to identical results as far as their
transformation properties is concerned. However, for
the sake of mathematical consistency, we shall use the
definition of ẑ− given in equation (16).

Let us remark that a typical spinor can be seen as a
combination ofẑ and ẑ−. In fact we can write

â =
(
a1

a2

)
= a1

(
1

0

)
− ia2

(
0

i

)
= a1ẑ− ia2ẑ−. (17)

This is an important formula. It shows how the
spinor associated with an arbitrary direction is expressed
through the spinors of thez-axis. Remember that
representing any direction in space by means of opposite
directions on one and the same line was one of our
starting requirements. The complex numbersa1 and
−ia2 are the components ofâ on ẑ andẑ−, respectively.
On the other hand,̂a can also be expressed throughx̂, x̂−
or ŷ, ŷ−. To see how, note that, taking equation (14) into
account,x̂ and x̂− can be written

x̂ = 1√
2

[(
1

0

)
− i

(
0

i

)]
= 1√

2
(ẑ− iẑ−),

x̂− = −i√
2

[(
1

0

)
+ i

(
0

i

)]
= −i√

2
(ẑ+ iẑ−). (18)

These two equations are easily inverted to give

ẑ = 1√
2
(x̂ + ix̂−), ẑ− = i√

2
(x̂ − ix̂−). (19)

On inserting equation (19) into equation (17) we obtain

â = 1√
2

[(a1 + a2)x̂ + i(a1 − a2)x̂−]. (20)

This formula shows that the components ofâ on x̂ and
x̂− are (a1 + a2)/

√
2 and i(a1 − a2)/

√
2, respectively.

With an analogous procedure we could obtain the
expressions for the components onŷ and ŷ−.

4. Spinors under rotations

We begin our study about the effect on spinors of
rotating the reference frame by starting from the simplest
case: a rotation about thez-axis by an angleα. Let us
take an arbitrary unit vector (ϑ, ϕ) in the real space.
Then a certain spinor̂a is associated with it. In figure 4
we show by a dashed line the intersection between the
x, y plane and the plane passing through thez-axis and
containing the chosen unit vector. It is seen that in
the rotated framex ′, y ′ the longitude of the unit vector
becomes

ϕ′ = ϕ − α. (21)
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Figure 4. Notation used for the analysis of the rotation
around the z -axis.

According to the association rule (9) the correspond-
ing spinor, saŷa′, has the explicit form

â′ =
(

cos(ϑ/2) e−i(ϕ−α)/2

sin(ϑ/2) ei(ϕ−α)/2

)
. (22)

This result can be synthesized in matrix form by writing(
a′1
a′2

)
= Rz(α)

(
a1

a2

)
, (23)

where

Rz(α) =
(

eiα/2 0

0 e−iα/2

)
(24)

is called the rotation matrix for thez-axis.
We now ask how this result is to be extended to

rotations about other axes. As before, let us refer
for example to thex-axis. Is the rotation matrix still
the same? The answer is negative because thez-
axis is somewhat privileged. We know in fact that in
the expression of̂a the numbersa1 and−ia2 are the
components with respect tôz andẑ− (see equation (17)).
On the other hand, we know how to expressâ through
x̂ and x̂− by means of equation (20). Therefore, we
can say that the rotation matrix for thex-axis has the
form appearing in equation (24) if we apply it to the
components of̂a with respect tox̂ and x̂− (instead ofẑ
and ẑ−). As a consequence, we can write

a′1 + a′2√
2
= a1 + a2√

2
eiα/2, (25)

i
a′1 − a′2√

2
= i

a1 − a2√
2

e−iα/2. (26)

Solving with respect toa′1 anda′2 we find

a′1 = a1 cos
α

2
+ ia2 sin

α

2
, (27)

a′2 = ia1 sin
α

2
+ a2 cos

α

2
. (28)

Figure 5. Notation used for the analysis of the rotation
around an arbitrary axis r .

The link between the components ofâ before and
after the rotation can be expressed in matrix form by(

a′1
a′2

)
= Rx(α)

(
a1

a2

)
, (29)

where the rotation matrix with respect tox is

Rx(α) =
(

cos(α/2) i sin(α/2)

i sin(α/2) cos(α/2)

)
. (30)

We are now ready to generalize the previous results
to rotation by an angleα about an arbitrary axis, sayr,
specified by colatitudeϑ0 and longitudeϕ0 as sketched
in figure 5.

Denote by r̂ and r̂− the spinors associated withr.
Taking into account equations (17) and (13) they can be
written as

r̂ = r1ẑ− ir2ẑ−, r̂− = −ir∗2 ẑ+ r∗1 ẑ−, (31)

where, according to the association rule, we have

r1 = cos(ϑ0/2) e−iϕ0/2, r2 = sin(ϑ0/2) eiϕ0/2. (32)

Solving equation (31) with respect tôz, ẑ− we obtain

ẑ = r∗1 r̂ + ir2r̂−, ẑ− = ir∗2 r̂ + r1r̂−. (33)

Let us now insert equation (33) into equation (17). The
expression for a typical spinor̂a then becomes

â = (a1r
∗
1 + a2r

∗
2 )r̂ + i(a1r2 − a2r1)r̂−. (34)

Equation (34) expresseŝa as a combination of̂r and
r̂−. Then the liner has taken on the role of thez-
axis. The components of̂a with respect tor̂ and r̂−
are (a1r

∗
1 + a2r

∗
2 ) and i(a1r2− a2r1), respectively. Upon

rotation ofα aboutr they change through multiplication
by the matrix (24) or

(a′1r
∗
1 + a′2r∗2 ) = (a1r

∗
1 + a2r

∗
2 ) eiα/2, (35)

i(a′1r2 − a′2r1) = i(a1r2 − a2r1) e−iα/2. (36)



An elementary approach to spinors 261

These equations can now be solved with respect toa′1
anda′2. The result is

a′1 = a1[|r1|2eiα/2 + |r2|2 e−iα/2] + 2ia2r1r
∗
2 sin(α/2),

(37)

a′2 = 2ia1r
∗
1r2 sin(α/2)+ a2[|r1|2 e−iα/2 + |r2|2eiα/2].

(38)

The resulting rotation matrix is

Rr(α) =
( |r1|2 eiα/2 + |r2|2 e−iα/2

2ir∗1r2 sin(α/2)
2ir1r

∗
2 sin(α/2)

|r1|2 e−iα/2 + |r2|2eiα/2

)
. (39)

Taking equation (32) into account and using
trigonometric identities, equation (39) can be written

Rr(α) =
(

cos(α/2)+ i cosϑ0 sin(α/2)

(i sinϑ0 cosϕ0 − sinϑ0 sinϕ0) sin(α/2)
(i sinϑ0 cosϕ0 + sinϑ0 sinϕ0) sin(α/2)

cos(α/2)− i cosϑ0 sin(α/2)

)
. (40)

If the direction cosines ofr,

rx = sinϑ0 cosϕ0, ry = sinϑ0 sinϕ0,

rz = cosϕ0, (41)

are used, equation (40) becomes

Rr(α) =
(

cos(α/2)+ irz sin(α/2)

(irx − ry) sin(α/2)
(irx + ry) sin(α/2)

cos(α/2)− irz sin(α/2)

)
. (42)

This is the matrix describing the most general rotation.
A spinor can now be characterized as an object of the
form (12) (in a certain frame) that under rotation of
the coordinate axes changes through multiplication by
Rr(α).

There is a significant consequence of the rotation law
that is worth noting. If the angleα equals 2π the
rotation matrix becomes the opposite of the identity
matrix. This means that under such a rotation both
components of any spinor change sign. Since a 2π -
rotation brings back the reference frame to its initial
configuration, such a result could be considered as an
inconsistency of our association rule. The surprise
comes when spinors are applied to particles with spin.
It turns out that upon 2π -rotation of the particle
spin (which is tantamount to rotating the reference
frame in the opposite sense), the change of sign for
the components of the corresponding spinor should
lead to detectable effects in certain physical situations.
These predictions have been confirmed through suitable
experiments [9]. It is interesting to remark that the
change of sign is a consequence of the choice leading
to the symmetric form in equation (2). This choice is
arbitrary from a purely mathematical point of view, but
seems to be the correct one to take into account this
experimentally evidenced phenomenon. On the other
hand, it should be noted that the topic concerning the
change of sign of a spinor due to rotations by 2π is still
under discussion [10].

5. Pauli matrices

The expression obtained in the previous section for the
most general rotation can be given a different and useful
form. The matrix appearing in equation (42) can in fact
be written

Rr(α) = cos(α/2)

(
1 0

0 1

)
+i sin(α/2)

[
rx

(
0 1

1 0

)
+ ry

(
0 −i

i 0

)
+ rz

(
1 0

0 −1

)]
. (43)

Of the four 2× 2 matrices appearing on the right, the
first one is of course the identity matrix, to be denoted
by I , while the other three, denoted byσx , σy andσz,
are the celebrated Pauli matrices [6]. More explicitly,
we have

I =
(

1 0

0 1

)
, σx =

(
0 1

1 0

)
,

σy =
(

0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (44)

As could be simply verified, the Pauli matrices obey
the following rules,

[σj , σk] = 2iεjklσl,

{σj , σk} = 2δjkI,

(j, k, l = x, y, z), (45)

where square and curly brackets denote commutator and
anticommutator, respectively.εjkl is the Levi-Civita
antisymmetric tensor andδjk is the Kronecker symbol.

With the present notation, equation (43) can be
synthesized as follows,

Rr(α) = cos(α/2)I + i sin(α/2)[rxσx + ryσy + rzσz]
= cos(α/2)I + i sin(α/2)r · σ, (46)

wherer is the unit vector, with componentsrx , ry and
rz along the liner, andσ stands for a sort of matrix
vector whose components are the Pauli matrices. Let us
transform equation (46) into a symbolic form that turns
out to be useful in quantum mechanics. To this end we
write down the well known series expansions

cos(α/2) =
∞∑
k=0

(iα/2)2k

(2k)!
,

i sin(α/2) =
∞∑
k=0

(iα/2)2k+1

(2k + 1)!
. (47)

On inserting from the latter equation into equation (46)
we obtain

Rr(α) =
∞∑
k=0

[
(α/2)2k(i)2kI

(2k)!
+ (α/2)

2k+1(i)2k+1r · σ
(2k + 1)!

]
.

(48)
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It is easily seen by using ordinary matrix multiplication
that

(ir · σ)2k = (i)2kI, (ir · σ)2k+1 = (i)2k+1r · σ.
(49)

When such identities are inserted into equation (48) the
following expression is obtained:

Rr(α) =
∞∑
k=0

(ir · σα/2)k
k!

= exp

(
ir · σα

2

)
. (50)

The expression on the right-hand side of equation (50)
is just the same as that which is frequently used in
quantum mechanics to describe rotation of the spin.
Actually it often represents the starting point to discuss
the effects of rotation, being in many cases derived from
the infinitesimal rotation operator.
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