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Abstract. We give a simple rule to associate a pair of Riassunto. In questo lavoro forniamo una semplice regola
complex numbers to a spinor. This association rule is per associare una coppia di numeri complessi ad uno spinore.
suggested by an analysis of the link between Jones vectors Tale regolae suggerita da un’analisi del legame che sussiste
and the Poincér sphere, which are tools commonly used in tra i vettori di Jones e la sfera di Poinéastrumenti

the description of polarized light, and allows the basic comunemente usati nella descrizione della luce polarizzata.
properties of spinors, such as the effect of rotations, to be Essa consente di derivare in modo semplice le prapdéet
derived in a simple way. In our treatment, we give a purely base degli spinori, come ad esempio I'effetto delle rotazioni.

mathematical description of spinors, without using the Nella nostra analisi, gli spinori sono descritti da un punto di

physical properties of the spin, so that the theory of spinors vista puramente matematico, senza fare uso delle prapriet

can be introduced independently from its application to fisiche dello spin; in tal modo la teoria degli spinorigpu

physics. essere sviluppata indipendentemente dalla sua applicazione
alla fisica.

1. Introduction (of the simplest type) are introduced as a tool for

representing oriented lines in real space using a pair of

The introduction of spin and spinors is one of the mostomplex numbers. The way to do this is suggested by
challenging tasks in an elementary course on quanturan analysis of the link between two of the most popular
mechanics. Even in the simplest case of spicertain  methods for describing polarized light, namely, Jones
fundamental aspects of this topic, such as the effects afectors and the Poincarsphere. Once the convention
rotation on spinors, turn out to be difficult to explain. for associating spinors to unit vectors of real space is
Very often one makes recourse both to intuition and taestablished, the basic facts of spinor calculus can be
physical constraints in order to derive the transformationlerived in a logical and straightforward way. This
rules. In some cases, it seems that arbitrary choicegpplies to transformation rules under arbitrary rotations,
are made. As a result the student may be left with th@auli matrices and their commutation relations. In this
unsatisfactory feeling that one has to figure out what th@pproach the mathematics of spinors is introduced and
pertinent laws are by a sort of trial and error proceduredeveloped without making use of spin properties (except
While somehow mirroring the historical developmentfor the starting motivation). In this way the application
of the subject, such a continuous interplay between thef such a tool to the description of spin appears as a
physical system and the mathematical model may givgygically separated step. In this paper, however, we
the impression that the latter could not be constructedshall not examine in detail such an application.
at least in simple terms, without making appeal to the
physical situation.

In order to avoid this state of affairs a clear cut
distinction between construction of the mathematical
tool (elementary spinor theory) and its applications
to physics is useful. Concerning this, some purely2. Jones vectors and the Poincar & sphere
mathematical approaches are present in the literature,
making use of geometrical structures, such as th&he aim of this section is to underline certain aspects of
isotropic vector [1], the stereographic projection [2] andJones vectors and the Poineaphere that are useful for
the flag picture [3]. our work. Only an elementary knowledge of these two

In this paper we suggest an approach in which spinor®ols for representing polarized light is required. Let us
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the wave propagates). This leads to the representation
of all possible states of polarization as points on the
upper hemisphere. A few states are shown in figure 1.
Such a representation, however, is slightly odd in that it
does not treat- andy-polarization on an equal footing.
Indeed, while a linear polarization along theaxis is
represented by the north pole, a linear polarization along
the y-axis corresponds to all the points on the equatorial
line. Since in the latter case the phase differedce
between thex- and y-components of the electric field
loses meaning, the only difference among points on the
equatorial line would be the field initial phase, a quantity
we decided to disregard. In order to eliminate this
drawback we have to modify our representation in such a

Figure 1. Light polarization states mapped on a way that the whole equatorial line collapses into a single
hemisphere. point. This is easily done on replacing equation (4) by
szcosz, Ayzsinz, O<y<m).
recall that a polarized monochromatic plane wave can 2 2 ©)
be specified by the Jones vector [4, 5].
Eo, € The complete expression of a typical Jones vector
( " ) , (1)  now becomes
EOy g%y

where Eo, and Eo, are the amplitudes of the- and O=<y=m0=<48<2nm).
y-components of the electric field whilg. and ¢, are ©)
the corresponding initial phases. The polarization state
remains unchanged both on multiplyi#gy, and Eq, by Again usingy as colatitude andl as longitude, the set
a common factor and on adding a common angle.to of points representing possible polarization states covers
andy,. As far as the polarization state is concerned, wdhe entire surface of the unit sphere. In particular, linear
can thus reduce the Jones vector to the symmetric form-polarization corresponds to the south pole. A few
Ae /2 states are indicated in figure 2. A peculiar feature of
( © ) ’ (2) this representation should be noted. States of orthogonal
A, € polarization are imaged onto points at opposite ends
where A, and A, are positive numbers that, through aof a diametrical line. This can be seen in general,
suitable choice of units, can be assumed to satisfy theut we content ourselves with the self-evident case of
equality linear polarization (we shall come back to this point in
2 5 section 3). If we take the unit vector ending at a typical
Ar+AT =1 @) point of the sphere as representative of a polarization
and wheres can be assumed as varying in the intervalstate, we can say that our mapping images orthogonal
0<34 < 27. polarization states onto antiparallel unit vectors. Let us
It is noted that a symmetric form as in equation (2) isexpress the same result in a different form. Since any
not necessary to represent polarization states, becaugelarization state can be represented as a superposition
in such a case one is interested only in the mutuadf two orthogonal states, for example linear and y-
dephasing between the two components, as already safeblarization, any unit vector in the representation space
On the other hand, the symmetric choice may have somean be thought of as the superposition of two antiparallel
important implications in the problems of spinors, asunit vectors along an arbitrarily chosen direction, for
will be clarified in the following. example the -axis. At first, looking at the sphere in its
Let us now observe that, thanks to equality (8), three-dimensionak, n, { space, this seems surprising
and A, can be thought of as the cosine and the sine (obecause we are accustomed to referring vectors to a
vice versa) of an angular variable spanning the intervalrame of mutually orthogonal axes. On second thought,
[0, /2]. Let us tentatively set however, we realize that this is in fact the most profound
meaning of our representation. Equation (6) can be
read by saying that cog/2) e¥/2 and sin(y/2) €/?
are the ‘components’ along ttgeaxis of the unit vector
At this point it is rather natural to think thag  pointing in the direction, 3).
and § could be taken as the colatitude and longitude, As is well known, the Poincérsphere is a classical
respectively, of a point on a unit sphere centred atvay to represent polarization states [4,5] and usually
the origin of a suitable reference frame, s@yn,¢  its introduction is made through the Stokes parameters,
(of course such Cartesian coordinates should not behich are related to the normalized coordinates on the
confused with the:, y, z coordinates in the space where sphere. The sphere of figure 2 is similar to the Poiacar

(cos(y/Z) e
sin(y /2) €2 ) ’

A, = cosy, A, =siny, O <y <n/2).
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3. Spinors

The most important motivation for the introduction of
spinors in physics is of course the existence of spin.
To begin with, we recall a fundamental property of
spin% particles. The measurement of spin along an
arbitrary direction always leads to the results or —1

(in 7/2 units). According to the principles of quantum
mechanics this requires that any state of the particle
be represented as a suitable superposition of the states
leading to those results. In particular, if we know that
the spin is along a direction having colatitudeand
longitude ¢ with respect to a given frame, y, z, we
should be able to represent it as a superposition of states
in which the spin is in the positive or negative direction
of the z-axis. The two latter states, which are often
briefly called spin up and spin down are orthogonal.
Physically speaking, this means that they represent
mutually exclusive outcomes. We are now confronted
with the problem of how to represent spin states of
the particle in mathematical terms. In particular, what
type of representation leads to the orthogonality (in a
mathematical sense) spin upandspin dowr?

In view of the remarks made at the end of the previous
section, we easily realize that column vectors of the form
(6) are possible candidates. We shall know explore this
possibility. In this exploration we will not use the spin
and its physical properties.

Let us consider a typical unit vector specified in real
space by colatitude& and longitudep. From now on
we shall simply say the unit vecto®(¢). We stipulate
that such a unit vector be associated with the following
mathematical object (of the same form as equation (6))

Figure 3. The Poincaré sphere. cos®/2) efwz
sin(®/2) g¢/? )’

0O<¥<m:0<¢p < 2n).

sphere but it is not quite the same. For the sake of . . . ©)
comparison, the Poindarsphere is drawn in figure 3, Such an object will be calledspinor. One may well ask
where s1, s, and s; are Stokes parameters [4]. It is Why we should introduce a new name instead of using
seen, for example, that its poles represent states &fe phraselones vectoras was done in section 2. To
circular instead of linear polarization. The reason foranswer this question we first observe that we are going
this difference is easily traced. The sphere of figure 40 use the arguments of section 2 the other way around.
originates from a representation by Jones vectors of théhere, we had, in physical space, a wave described in a

form (2) in which the basis vectors are rather obvious way by a Jones vector and we arrived at
1 0 a fictitious three-dimensional spacdg n, ¢ where each
( ) , ( ) , (7)  Jones vector was associated to a unit vegtos). Here,

0 1 we start with a physical three-dimensional space and we

corresponding to linearly-polarized fields along thetry to find a suitable representation of it through objects
x- and y-axis, respectively. On the other hand, of the form (9). It could be objected that we are simply
any polarized wave can be represented as a suitableoking at the same matter from a different viewpoint.
superposition of right- and left-circular-polarized fields. We then remark that such a different viewpoint makes

In this case the basis vectors are [4, 5] relevant a question that would not appear the other way.
1 /ein/A 1 /e /4 How d_oes a spinor change .when.we rotate the reference

— ( - ) , — ( a4 > (8) frame in real space? This is an important question. To
v2\e v2\¢e understand why, let us recall that an ordinary (three-

Starting from this new basis and proceeding as befordimensional) vector is not just a triplet of real numbers

we obtain the Poincérsphere, except for a rotation by but an abstract object represented by three numbers or,

/2 around the;-axis. which is the same, by its three Cartesian components in
a certain reference frame. The true nature of the vector
is revealed by the transformation laws obeyed by those
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three numbers when the reference frame changes. Thectorz_ is generally taken as (0, 1) [6-8]. This is due
same is true for a spinor. As a mathematical objectto the fact that the angle is indeterminate along the

a spinor is specified by its transformation rules undeg-direction (we have arbitrarily set equal to zero). It
rotations of the reference frame. It is to find thesecould be easily verified that the use of either of the two
rules that the next section is devoted. Before doing thisspinors would lead to identical results as far as their
however, we need some more preparation. In particulatransformation properties is concerned. However, for
we must endow spinors with an inner product. If wethe sake of mathematical consistency, we shall use the

denote two typical spinors by definition of Z_ given in equation (16).
4 . b Let us remark that a typical spinor can be seen as a
a= < 1) , b= (bl) , (10)  combination ofz andz_. In fact we can write
az 2

1 . 0 .
wherea,, a, and by, b, are of the form (9), we define a = <a1) =a; (O) —iay ( : > =z —laz_. (17)
a

their inner (or dot) product as 2
O X « This is an important formula. It shows how the
a-b=aiby+azbe, (11) spinor associated with an arbitrary direction is expressed
where the asterisk denotes complex conjugate. Not#hrough the spinors of the-axis. Remember that
that interchanging the order @f and b leads to the representing any direction in space by means of opposite
complex conjugate. In particular, two spinors are saidfirections on one and the same line was one of our
to be orthogonal ii - b = O. starting requirements. TfJe C(A)mpIeAx numbe;sand
In summary, our definitions are expressed by_"‘2 are the components afon andz., respectAlvgly.
equation (9), which will be referred to as the associatiorP>" € other handi can also be expressed througix
rule, and by equation (11), the inner product rule.  ©f V> J-. To see how, note that, taking equation (14) into
We can now control the fact that two opposite unit2cCOUNt.t and:_ can be written
vectors on a line lead to orthogonal spinors. Lebe 1 [(1) i (0)] 1 G _iz)
the spinor corresponding to the unit vectér ¢). More =7 — =zl
explicitly, we have v2[\o0 ! V2

. —-if/1 (0 =i,
-(2) B GRIGIRE S
225(19/2) oiof2 These two equations are easil}/ inverted to give
- ( sin(9/2) €¢/? ) ' 7= i(ﬁ +ixl), = L(i —iz). (19)
We denote bya_ the spinor obtained on passing to ,ﬁ . . . V2 . .
the opposite direction. This amounts to changinito ~ On inserting equation (19) into equation (17) we obtain

7 — ¥ andg into ¢ + 7. Using the association rule we 1
find =7
. 2

. cos((m — ) /2) e7iv+m/2 . V2 PN
a_ = ) _ 9)/2) e This formula shows that the componentsaobn x and
sin((r %_ are (a1 + az)/~/2 and {(a; — a)/+/2, respectively.

_ —ia; (13) With an analogous procedure we could obtain the
iai )’ expressions for the components drand y_.

=>

12)

ISH

[(a1 + ax)x +i(a1 — ax)X_]. (20)

On inserting equations (12) and (13) into the inner
product rule (11) we see théat-a_ = 0.
It will be useful to introduce a special notation for
the spinors corresponding to unit vectors along the
opposite directions on the Cartesian axes of real spacg, Spinors under rotations
We denote such spinors by, x_, y,y_ and z,Z_.
On applying the association rule we easily find theirwe begin our study about the effect on spinors of

expression: rotating the reference frame by starting from the simplest
1 /1 —i/1 case: a rotation about theaxis by an angler. Let us
X = —( ) X_ = —( ) (14) take an arbitrary unit vectors(¢) in the real space.
V2 \1 | v2\-1 ) Then a certain spinaf is associated with it. In figure 4
.1 (e L1 e s e show by a dashed line the intersection between the
y= NANCEUN y-= V2 \ e ) x, y plane and the plane passing through tkexis and
1 0 containing the chosen unit vector. It is seen that in
3= , = 16 e rotated frama’, y’ the longitude of the unit vector
Z 0 4 the rotated f ', y' the longitude of th it vect
! becomes

It can be noted that equation (13) gives, far, a

S - X o =¢p—a (21
result which is not common in the literature, where the
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Figure 4. Notation used for the analysis of the rotation (P
around the z-axis. X 0

According to the association rule (9) the correspondf ig“redS' Nogiﬁon used for the analysis of the rotation
ing spinor, sayi’, has the explicit form around an arbitrary axis r.

R cog1/2) e iw-)/2 . R
= ; ) (22) The link between the components afbefore and
sin(9/2) @/ after the rotation can be expressed in matrix form by
This result can be synthesized in matrix form by writin ]
y Y <%>=Rﬁw<m), (29)
al a ) a, az
d) = R:(a) a)’ (23)  where the rotation matrix with respect tois
where Ro@) = (ICC.)QOZ/Z) isin(a/2)> ‘ (30)
der2 0 isin(e/2) coYw/2)
R (o) = ( 0 m/z) (24) We are now ready to generalize the previous results
e to rotation by an angle about an arbitrary axis, say
is called the rotation matrix for the-axis. specified by colatitud®, and longitudep, as sketched

We now ask how this result is to be extended toln figure 5. N _ ) _
rotations about other axes. As before, let us refer Denote by and7_ the spinors associated with
for example to ther-axis. Is the rotation matrix still 1aking into account equations (17) and (13) they can be
the same? The answer is negative becausezthe Written as
axis is somewhat privileged. We know in fact that in F=r2—iri_, o= —ir;z+riz_, (31)
the expression ofi the numbersz; and —ia, are the . o
components with respect fcand?_ (see equation (17)). where, according to the association rule, we have
On the other hand, we know how to exprésthrough -, = cogwy/2) e%0/2, rs = SiN(Yg/2) €99/2, (32)
x and x_ by means of equation (20). Therefore, we ) ) ) R .
can say that the rotation matrix for theaxis has the S°Iving equation (31) with respect foz_ we obtain

form appearing in equation (24) if we apply it to the S =riF +ind, to=irgf+ri.  (33)
components ofi with respect tat andx_ (instead of? ) ) ) i
and?_). As a consequence, we can write Let us now insert equation (33) into equation (17). The
' expression for a typical spingr then becomes
al}az = al}az gz, (25) a = (arry + azry)F + i(air; — azry)r-. (34)
2 2 . . N
d —d v —a Equation (34) expressas as a combination of and
ja— %2 8T P2 a2 (26) F-. Then the liner has taken on the role of the

V2 V2 axis. The components af with respect tor and7_
are @iry +apry) and Kair, — apr), respectively. Upon
rotation ofa aboutr they change through multiplication
by the matrix (24) or

Solving with respect te; anda;, we find

ay=a1 cosg + iap sin g, (27) )
2 2 (ayrs + ayry) = (arrs + agry) €72, (35)

, . e o .
a, =lap Sin E +az COSE. (28) i(a:’er _ a/zrl) — i(alrg — ayry) eflo(/2. (36)
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These equations can now be solved with respeet;to 5. Pauli matrices
anda,. The result is
The expression obtained in the previous section for the
most general rotation can be given a different and useful
(37)  form. The matrix appearing in equation (42) can in fact

dy = ay[|r’€? + |rof? €7/%] + 2iazryr; sin(/2),

ay = 2iarriry sin(a/2) 4 ay[|r1|? 12 4 |y, |2de/?]. be written
(38) 10

The resulting rotation matrix is R-(@) = cose/2) 0 1

|r1|? €972 4 |rp|? €7/ 01 0 —i
R, = . . isi

(@) < 2irtrs sin(a/2) +isin(a/2) [rx (1 O) +ry ( 0 )
2iryr; sin(ee/2) 1 0
Ira2 e/ + |rpf2e/2 ) ¢ = o (0 —1>] ' )

Taking equation (32) into account and using

trigonometric identities, equation (39) can be written ~ Of the four 2x 2 matrices appearing on the right, the
first one is of course the identity matrix, to be denoted

R, (o) = < o cose/2) +i<.:05190.sin(a/.2) by 1, while the other three, denoted by, o, ando,
(isindg cospy — SN SiNgo) Sin(er/2) are the celebrated Pauli matrices [6]. More explicitly,
(isin¥g coSwy + SNy Singg) sin(a/2) ) (40) we have
cogw/2) — icosvysin(a/2) 1 0 0 1
If the direction cosines of, I'= (o 1) : O = <1 O) :
ry = SinYy COSyy, ry = SiNg Singy, 0 —ij 1 0
r; = COSgy, (41) oy = (i 0 ) o, = (o _1>. (44)
are used, equation (40) becomes

R As could be simply verified, the Pauli matrices obey
R(a) = (COS(a/Z) + ir; sin(a/2) the following rules,
() = . .
(iry —ry) sin(ee/2)
(rs + r),)_sm(g/z) ) . (42) {0/, 00} = 28,1,
coqa/2) —ir, sin(/2) . 45
This is the matrix describing the most general rotation. Uik l=x..2), (45)
A spinor can now be characterized as an object of thevhere square and curly brackets denote commutator and
form (12) (in a certain frame) that under rotation of anticommutator, respectively.c;; is the Levi-Civita
the coordinate axes changes through multiplication byntisymmetric tensor ang); is the Kronecker symbol.
R, (a). With the present notation, equation (43) can be
There is a significant consequence of the rotation lawsynthesized as follows,
that is worth noting. If the angler equals z the
rotation matrix becomes the opposite of the identityR,(a) = coSa/2)I +isin(e/2)[r 0, + ryo, +r.0;]
matrix. This means that under such a rotation both = cosw/2)I +isin(a/2)r - o, (46)
components of any spinor change sign. Sincera 2
rotation brings back the reference frame to its initialwherer is the unit vector, with components, r, and
configuration, such a result could be considered as an along the liner, and o stands for a sort of matrix
inconsistency of our association rule. The surprisevector whose components are the Pauli matrices. Let us
comes when spinors are applied to particles with spintransform equation (46) into a symbolic form that turns
It turns out that upon 2-rotation of the particle outto be useful in quantum mechanics. To this end we
spin (which is tantamount to rotating the referencewrite down the well known series expansions
frame in the opposite sense), the change of sign for o o
the components of the corresponding spinor should costa/2) :Z (ia/2)
lead to detectable effects in certain physical situations. (2k)!
These predictions have been confirmed through suitable o _—
experiments [9]. It is interesting to remark that the i singe/2) = Z (ia/2) @7)
change of sign is a consequence of the choice leading @k + 1!
to the symmetric form in equation (2). This choice is
arbitrary from a purely mathematical point of view, but On inserting from the latter equation into equation (46)
seems to be the correct one to take into account thige obtain
experimentally evidenced phenomenon. On the other ~ Ok fiv 2k D i 2kl
hand, it should be noted that the topic conceming theg, (@) = Y [(“/2) O*1 | (@/* )™ - U]
change of sign of a spinor due to rotations by i2 still = (26! (2 + 1!
under discussion [10]. (48)

[C’j, or] = 2i€iklo'17

k=0

k=0
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It is easily seen by using ordinary matrix multiplication References

that

(ir- o) = H*1, (ir- )% = (H&Hr . o g
(49) [z
When such identities are inserted into equation (48) the[i]
following expression is obtained: [4]
o i, k [5]

R (o) = Z %
=0 : [6]
= exp(lr '20(1) . (50) [7]

The expression on the right-hand side of equation (50)[8]
is just the same as that which is frequently used in
guantum mechanics to describe rotation of the spin.ig
Actually it often represents the starting point to discuss{lO]
the effects of rotation, being in many cases derived from
the infinitesimal rotation operator.
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