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Abstract. We study the three-dimensional field distribution of a focused 
axially symmetric flattened Gaussian beam. In particular, exact closed-form 
expressions for the intensity along the optical axis and at the focal plane are 
provided, together with a comparison between our results and those pertinent 
to the case of a converging spherical wave diffracted by a hard-edge circular 
aperture. Some hints for future investigations are also given. 

1. Introduction 
Flattened Gaussian beams (FGBs) were introduced by Gori [l] as an efficient 

model to study the propagation features of beams showing, at a given waist plane, a 
flat-top profile. The interest in beams exhibiting such a behaviour is related to the 
fact that, in some applications, field distributions are required that are as flat as 
possible within a given area and almost vanish outside it. Furthermore, flattened 
profiles are also of interest in the study of the imaging properties of apodized 
pupils [2] and of optical resonators with variable-reflectivity mirrors [3, 41. 

As a general rule of the propagation process, the flatness of a (transversally 
limited) coherent light profile must necessarily be lost upon propagation, and one 
can be interested in evaluating the field present at planes different from the waist 
plane. A limiting case consists of the problem of the diffraction of a plane wave by a 
circular hole, for which the flatness of the propagated profile is lost (at least within 
the framework of the paraxial approximation) for any, arbitrarily small distance 
from the screen. In this case the field profile at the waist plane is proportional to 
the function circ ( Y / u ) ,  a being the radius of the hole, and the propagation problem 
can be solved numerically, by means of the Lommel functions [S]. 

The most celebrated example of beams showing a flattened profile, the well 
known super-Gaussian beams [6], are characterized by a very simple expression at 
the waist plane but require specific numerical procedures in order to evaluate the 
propagated field [7, 81. On the other hand, FGBs offer the advantage of being 
expressible as a finite sum of Laguerre-Gauss modes [9], and then the correspond- 
ing propagation problem can be solved exactly and does not require any numerical 
integration. 

In [lo] the free paraxial propagation of FGBs was studied, both theoretically 
and experimentally, and the M 2  factor for such beams was also evaluated. Some 
properties of FGBs in rectangular coordinates have been recently investigated in 
[ I l l .  

In the present paper we report some results pertinent to the case of a focused 

0950-0340/97 812.00 0 1997 Taylor & Francis Ltd. 



Downloaded By: [Universita' degli Studi Rom
a Tre] At: 11:14 19 January 2007 

634 M. Santarsiero et al. 

FGB. In section 2 we recall the definition and the main paraxial propagation 
properties of FGBs, while in section 3 we consider the case of a focused FGB. In 
section 4 we give particular expressions for the focused field at the geometrical 
focal plane, along the optical axis and along the boundary of the geometrical 
shadow. Finally, in section 5 we show some results about the phase anomaly along 
geometrical rays passing through the focus. 

2. Flattened Gaussian beams 
In this section we briefly recall the definition and some properties of the FGBs. 

We introduce a reference frame with cylindrical coordinates ( Y, $J, z) ,  having the z 
axis and the z = 0 plane coincident with the propagation axis and the waist plane of 
the beam respectively. Since we shall study only axially symmetric field distribu- 
tions, all the quantities used throughout the paper will be considered as depending 
on r and z alone, the angle $J being immaterial. This choice corresponds to 
studying the field distribution across a meridional plane. Moreover, we suppose 
that a vectorial treatment is not required for the study of the involved fields, which 
will be described by scalar functions. 

We define a FGB as a beam showing the following field distribution on the 
z = 0 plane [ l ,  101: 

where A0 is a constant factor, wo is a positive parameter and N is an integer greater 
than or equal to zero. In  figure 1, curves of UN(Y, O ) / &  are shown as functions of 
r/wo for several values of N, together with the circ function. I t  can be seen that the 
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Figure 1 .  Flattened Gaussian profiles for different values of the parameter N ,  together 
with the circ function. 
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curve is Gaussian for N = 0, becomes more and more flattened on increasing N 
and tends to the function circ (Y/WO) when N goes to infinity. In conclusion, the 
shape of a FGB at its waist plane is characterized by two parameters, namely wo 
and N ,  denoting the width of the beam and the rapidity of the transition from the 
maximum value Ao to zero respectively. 

Although FGBs form a discrete family, whereas for example super-Gaussian 
beams furnish a continuous set, it is seen from equation (1) as well as from figure 1 
that, except for the first few values of N ,  FGBs afford a rather dense set of 
functions and give, in practice, a tool for the study of flattened fields described by 
other analytical expressions, such as super-Gaussian beams [12]. 

As we said above, one of the most attractive properties of FGBs is that they can 
be expressed as the superposition of a finite number of Laguerre-Gauss beams [9]. 
In fact, the field (1) can be written in the form [l] 

where Ln is the nth Laguerre polynomial [13] and the c iN)  coefficients are defined 
as follows: 

Equation (2) states that the Nth-order FGB of width wo can be thought of as 
the sum, weighted by the coefficients c i N ) ,  of the first N Laguerre-Gauss beams, 
all having the same waist size 

Some of the properties of the c iN)  coefficients have been reported in [lo], where a 
useful recurrence relation was also derived. 

Finally, we recall the expression of a FGB propagated through a paraxial 
symmetric optical system, characterized by an ABCD matrix [9]. Under the non- 
restrictive hypothesis that the input plane coincides with the waist plane of the 
beam, the output field turns out to be [lo] 

where the indexes 0 and 1 denote the input and the output planes respectively of 
the system, k is the wavenumber, I is the optical length measured along the optical 
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axis, and the following relations have been used: 

@N(l) =tan-’ G, 

where 

and A ,  B and C are the elements of the pertaining ABCD matrix. 

system giving rise to a focused FGB. 
In the next section we shall specialize these results to the case of an optical 

3. Focusing of flattened Gaussian beams 
In the paraxial regime, a converging FGB is obtained by superimposing a 

quadratic phase modulation, with a negative curvature radius, say -f, to the field 
given by equation ( 1 ) .  The resulting field in the plane z = 0 is 

To obtain the expression of the field propagated at a distance z, starting from 
the distribution (8), we have simply to apply the results of the previous section to 
an optical system consisting in one thin converging lens with focal length f placed 
in the input plane. Moreover, the plane at a distance z beyond the lens is the 
output plane. The  ABCD matrix for such system will be given by the product of 
the matrices corresponding to the thin lens and the free propagation, that is 

and the length 1 in equation (5) must be taken as z. 

dimensionless coordinates 
Furthermore, following the classical theory of Lommel [5], we introduce the 

F F 
wo f 

v = - r ,  u = - ( z - f ) ,  

where the parameter 

kw2 

”=? 
is proportional to the Fresnel number N F  [9] by a factor 2 ~ .  



Downloaded By: [Universita' degli Studi Rom
a Tre] At: 11:14 19 January 2007 

Focusing of axially symmetric Jlattened Gaussian beams 637 

Using these new variables, the propagated field ( 5 )  can be written as 

where 

112 U 
a N ( u )  = ( 1  + i) [ (-)’ + 4” + , 

4(N + q2 + [u/(l  + U / F ) l 2  P N ( u )  = F ( l + ’ )  f 4(N + 1)2  + Fu/( l  + u / F )  ’ 

y N ( u )  = tan- 1 [ 
(1 +;)I. U 

These quantities are obtained by introducing the values of A ,  B and C ,  given 
by equation (9), into equations (6  a)-(6 c) and (7) ,  and by using the definitions (10) 
and ( 1  1 ) .  In equation (12) and in the following we add a prime to distinguish the 
functions of v and u from those pertinent to the same quantities but considered as 
functions of r and z. 

Let us introduce, for convenience, the (complex) function 

and denote its phase by X N ( V , U ) .  Then, the focused field can be written as 

and, in particular, its intensity and phase will be given 

The field obtained following these lines represents the exact solution of the 
propagation problem, for any choice of the values of N and F .  However, in order 
to simplify equations ( 1 3  a)-(13 c ) ,  it is convenient to consider their limiting 
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behaviour for large values of F, that is to require that 

with u and v being kept fixed. From definitions (10) and (1 l), it follows that this 
requirement is equivalent to keeping the observation point as well as the 
wavelength and the angular semiaperture wolf fixed and lettingf + 00 [14]. This 
is exactly the condition under which the classical formulation of Lommel is 
derived [15]. We shall see in the following how, starting from the results obtained 
in this limit, one can easily derive the exact results, valid for any choice of F. 

Hence, by adopting the approximation (1 8), equations (1 3 a)-( 13 c) for the 
propagation parameters become 

aYN(11) M [4 (N  + 1)2 + u y 2 ,  (19a) 

4(N + 1)2 + u2 

i j N ( u ) = F 4 ( N + 1 ) 2 + F ~ ’  

R 
yN(u) M - + tan-’ 

2 

On inserting equations (1 9 u)  and (1 9 c) into equation (1 4) and from the latter 
into equation (16) we see that in the present limit, once N has been chosen, the 
intensity profile is completely specified (apart from the overall factor F2).  On the 
other hand, to evaluate the phase profile, one has to fix the numerical aperture of 
the system (f# =f/2wo), as well as the Fresnel number ( N F  = F/2x), on which 
+h still depends (see equations (17) and (19b)). 

In figures 2 (a), (b), (c) and (d) contour plots of the intensity (isophotes) on the 
(u, v )  plane are shown for N = 1, N = 4, N = 16 and N = 100 respectively. In  that 
figure, labels refer to ten times the common logarithm of the intensity. The latter is 
normalized with respect to its maximum value. As stated above, these curves are 
independent of the Fresnel number and the numerical aperture, and they show 
symmetry with respect to both axes. From the analysis of these curves it can be 
noticed that, on increasing N, the intensity distribution at the focal plane widens, 
as was expected, and, conversely, the depth of focus increases. This means that, in 
some applications, an optimum value of the order of the FGB could be chosen for a 
trade-off between focused power and depth of focus. Furthermore, the intensity 
pattern at the focal plane has dark rings. In the next section we shall see that the 
number of these dark rings equals the order of the FGB. 

The  curves in figures 2 (a)-(d)  should be compared with the celebrated curves 
appearing in the paper by Linfoot and Wolf [16] (see also [S]) obtained by means of 
the Lommel functions, for the case of a converging spherical wave diffracted by a 
circular aperture. For convenience, the Linfoot-Wolf curves are redrawn in figure 
2 (e). It is seen that, on increasing N, the curves obtained by equation (16) become 
more and more similar to those of figure 2 (e). 

In  figure 3, grey-level plots are presented for the phase of the field, in the 
proximity of the focal plane, for the same values of the order N (withf# = 3 .5  and 
F = lo3) .  We can note that dislocations of the phase appear to correspond to the 
zeros of the intensity distribution. 
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Figure 2. Isophotes in the (u ,v )  plane for focused FGBs near focus for (u)  N = 1 ,  
( b )  N = 4, (c) N = 16 and ( d )  N = 100. (e) The case of a converging spherical wave 
diffracted by a circular hole. 
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(4 (4 

Figure 3. Grey-level plots of the phase for focused FGBs in the (u, v )  plane near focus for 
(a) N = 1, (b) N = 4, (c) N = 16 and (d) N = 100. 

Before concluding this section, we briefly point out how to extend the results 
obtained in the limit of large Fresnel numbers to the most general case [14]. The 
exact expression of the focused field, in fact, coincides with the approximate 
expression, provided that the variables v and u are replaced by the new variables 

and that the values of amplitude and phase are corrected by means of the factor 

The most evident effect of non-negligible values of u / F  on the field profiles is 
due to the fact that the relationship between the variables ( W F ,  UF) and the physical 
coordinates ( T , z )  is nonlinear. In fact, when the Fresnel number is not large 

1 - U F / F .  
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enough, this nonlinearity causes the diagrams of the isophotes, when considered as 
functions of the physical coordinates, to be distorted with respect to those shown 
in figure 3. In particular, the point where the maximum of the intensity is 
observed, which in figure 2 coincides with the geometrical focus, appears to be 
shifted towards the lens, and the symmetry with respect to the z = f axis is lost. 
This effect is related to the well known focal shift that occurs in the focusing of 
optical fields with low Fresnel numbers [17-201. An accurate description of the 
deformations induced by the relations (20) can be found in [14]. 

4. Field distribution in some particular cases 
Starting from equation (1 5) and using the definitions (14) and (1 9 a)-( 19 c )  it is 

possible to evaluate the field distribution for some particular cases. In this section 
we shall deduce the expressions of the focused field in the focal plane, on the 
optical axis and along the boundary of the geometrical shadow. 

4.1. Field in the geometrical focal plane 

(19 a)-(19 c ) ,  that 
In this case we have u = 0, whence it can be easily seen, from equations 

o N ( 0 )  = 2(N + 1)' (21 a )  

P N ( 0 )  = F ,  (21 b )  

and, from equations (14) and (17), that 

and 

rt v2 +L(v, 0 )  = kf - - + - 
2 2 F '  

The sum in equation (22) can be evaluated starting from the definition (3) of 
the ckN) coefficients, and by exploiting some properties of the Laguerre poly- 
nomials [ 131, and the resulting field (1 5) is 

-iAoF V* 
U L ( v , O )  = 2(N + 1) exp [ i ( kf+- ~ ~ ) ] L ~ ' ( 4 ( ~ : 1 ) )  exp ( - 4 ( ~ + 1 ) ) '  

where the Laguerre polynomial with indexes N and 1 has been introduced [13]. As 
is well known [5], this expression is related to that giving the field produced in the 
far zone by a non-focused FGB and in fact coincides, apart from phase factors, 
with the expression given in [lo] for the far-field limit. Therefore, as for the case 
treated in [lo], it is possible to show that the field (24) tends, when N goes to 
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Figure 4. Intensity profile of focused FGBs on the focal plane, for different values of N ,  
together with the case corresponding to the circ function. 

infinity, to the diffraction pattern for a circular hole, that is 

where J1 is the Bessel function of the first type of order 1. 
It is worth noting that, since in the focal plane UF = u = 0 and V F  = v ,  

equations (24) and (25) keep their validity for any choice of the Fresnel number, 
because condition (18) is always fulfilled. 

In figure 4, curves of the intensity of the function (24) are shown, for several 
values of N, together with that pertinent to the function (25) (dotted curve). It can 
be seen that in the central zone the intensity of the field is well approximated by its 
limiting curve even for small values of N, while the difference becomes more and 
more evident as the radial coordinate increases. Finally, the presence of the Nth-  
order Laguerre polynomial in equation (24) ensures that the diffraction pattern 
shows exactly N dark rings in the focal plane. 

4.2. Field along the optical axis 
In this section we show some results pertaining to the case in which v = 0, 

corresponding to the points lying on the optical axis. Letting v = 0 in equation 
(14), we get 

. N  
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Figure 5. On-axis intensity of focused FGBs, for different values of N, together with the 
case corresponding to the circ function. 

which, from equation (3) ,  becomes [lo] 

1 - sinN+' [yN(u)] exp {i(N + 1)[x/2 - y N ( u ) ] }  

w ( u >  cos [YN(21)1 
HN(0,  u )  = 

Moreover, by using equation (19 c), after some calculations we obtain 

In this case, too, it is possible to perform the limit for N -i 00, yielding 

in agreement with the results given by the Lommel theory [S]. It should be noted 
that, while in this limiting case the on-axis intensity shows zeros (evenly spaced, 
except for u = 0,  with period Au = 4x), this is not the case for any finite values of 
N, because the modulus of the function (28) never vanishes. Plots of the intensity 
of the function (28) are shown in figure 5 for several values of N, together with that 
of the limiting function (29) (dotted curve). 

4.3. Field along the boundary of the geometrical shadow 
In the study of the diffraction of a spherical wave by a circular aperture, a 

quantity that can be easily evaluated is the field along the boundary of the 
geometrical shadow [S]. In this section we show the analogous quantity, pertinent 
to the case of a focused FGB. More precisely, since in this case a geometrical 
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Figure 6 .  Intensity profile of focused FGBs along the boundary of the geometrical 
shadow, for different values of N ,  together with the case corresponding to the circ function. 

shadow cannot be defined in a rigorous way (except in the limit N + oo), we shall 
study the field along lines passing through the focus and the coordinate Y = wo of 
the z = 0 plane. These lines are represented in the ( r , z )  plane by the equations 

WO 
y = f-(f f - z), 

or by use of the pertinent dimensionless variables 

v = fu. (31)  

In figure 6 plots of the intensity of the focused field evaluated along the line 
v = u are shown, for different values of N. It is evident that, since the field is 
axially symmetric, it is immaterial to choose the + or the - sign in equation (31) .  
In the same figure, the limiting curve, evaluated through the relation [ S ]  

7 (32)  
1 - 2JO(U) cos u + J&) 2 

I L ( U , U )  = (F) U2 

is shown by a dotted curve. 

5. The phase anomaly 
In this section we study how the phase of the field changes as the observation 

point moves along a ray passing through the focus. Instead of the phase & ( I ,  z) of 
the focused field, however, it is convenient to visualize the so-called phase anomaly 
S(r , z ) .  The latter is defined as the difference between +N and the phase of a 
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spherical wave converging to the focus. In formulae we have 

and 

(35)  
2 112 

p =  [ r 2 + ( z - f )  ] . 

By recalling the definitions (10) of the dimensionless variables z, and u and the 
expression for the phase of the focused field (equation (17))) we obtain 

where the constant term kf, present in equation (17), has been omitted and the 
signum function sgn (u )  has been used. 

In figures 7, 8 and 9 the phase anomaly of focused FGBs with f# = 3.5 and 
F = lo3 is shown for N = 4, 16 and 100 respectively. The inclination angles 8 are 
chosen as 8-13' (corresponding to the boundary of the geometrical shadow), 4", 2" 
and 0". In figure 10 the same quantities are calculated for the case of a spherical 
wave diffracted by a circular hole, by using the Lommel functions. 

In each case it can be noted that the phase anomaly undergoes a continuous 
change of -n on passing through the focus. Such change is more rapid for high 
values of the angle 8 and is observed for every value of N. This effect was 
predicted long ago by Gouy [21] and has been the subject of many investigations, 
even recently [16, 22-25]. 

Finally, we note that, in the case of a ray along the optical axis (figure lo), the 
phase anomaly tends, for high values of N, to a linear function, with disconti- 
nuities at values of u multiples of 4n (except for u = 0), and this behaviour is 
independent of both the numerical aperture of the beam and the Fresnel number. 
This is because in this case the anomaly is given, apart from constant terms, by 
u/4 f n/2 (see equations (29) and (36)), where the sign is determined by the sign of 
the function [sin (u/4)]/(u/4). 

6. Conclusions 
In this paper the field produced by a converging FGB has been evaluated, and 

plots of both the intensity and the phase distributions have been presented. We 
showed that the quantities evaluated for a converging FGB, such as the field across 
the focal plane and along geometrical rays passing through the focus, tend, on 
increasing the order of the beam, to those pertinent to a converging spherical wave 
diffracted by a circular hole. 

In particular, owing to the analytical structure of FGBs, the propagated field 
can be exactly evaluated starting from the propagation features of Laguerre-Gauss 
modes, and very simple closed-form expressions can be given for the field along 
the optical axis and across the focal plane. 
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Figure 8. The same as in figure 7 but for a FGB of order N = 16. 
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Figure 9. The same as in figure 7 but for a FGB of order N = 100. 
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Figure 10. The same as in figure 7 but for a converging spherical wave diffracted by a 
circular aperture. 
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Our results confirm the fact that the family of FGBs is an attractive example of 
flat-top beams and could be useful for several applications, such as the study of 
optical resonators with variable-reflectivity mirrors or the design of optical systems 
with an apodized pupil. 

Finally, this model could be profitably used to calculate other useful quantities, 
such as the total power falling onto a circle centred on the optical axis at a plane 
parallel to the focal plane, or the focal shift of focused flattened beams. 
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