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Plane-wave scattering by a dielectric circular
cylinder parallel to a

general reflecting flat surface
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We present a generalization of a method developed for treating the plane-wave scattering by a perfectly con-
ducting circular cylinder in front of a plane surface to the case of a generic dielectric circular cylinder. Thanks
to this formulation, the problem can be treated in a very efficient way for both the near and the far field, and
an accurate determination of the field inside the cylinder is possible. Numerical results and comparisons with
other methods are presented. © 1997 Optical Society of America [S0740-3232(97)02806-8]
1. INTRODUCTION
Recently,1 we studied the scattering problem of a plane
wave by a perfectly conducting circular infinite cylinder
placed in front of a plane discontinuity for the electromag-
netic constants. The proposed method, starting from the
customary expansion of the scattered field, exploits the
plane-wave representation of cylindrical waves2 and pro-
vides a rigorous solution for this problem, at least in its
theoretical basis. In a practical implementation of the
algorithm, even if some numerical approximations must
be made because of the necessity of truncating the in-
volved series, a very rapid convergence and a remarkable
stability with respect to the input data are obtained.
These characteristics make the technique attractive for a
wide range of applications. In this paper we intend to
generalize the aforementioned approach to the case of a
dielectric cylinder, characterized by a refractive index
nc , which can also assume complex values, corresponding
to lossy materials.
The study of the scattering of a plane wave by a dielec-

tric cylinder, with or without a reflecting surface, has a
great number of applications, such as optical fiber char-
acterization, microwave heating, defect detection in semi-
conductors, and near-field optics.3–10 The scattering
problem for an isolated cylinder was first studied by Lord
Rayleigh11 and then generalized by Wait12 to the case of
oblique incidence. Richmond13 studied a cylinder with
arbitrary cross section and solved the problem numeri-
cally, making use of the concept of equivalent currents.
When a plane interface is introduced, even in the case

of a circular cylinder, the problem turns out to be much
more difficult to deal with and only numerical approaches
have been used to solve it. In particular, the far-zone
scattered field has been determined by using coupled-
dipole or integral-equation methods.14,15

The present generalization of the method proposed in
0740-3232/97/0701500-05$10.00 ©
Ref. 1 affords a solution for a wide class of scattering
problems. More precisely, since the presence of the in-
terface is taken into account only through the reflection
coefficient, very different types of surfaces can be consid-
ered. Moreover, both the near- and far-zone diffracted
fields can be determined for both polarization states (TE
and TM, with respect to the cylinder axis).
In Section 2 the theoretical approach is described,

while in Section 3 the convergence properties are shown
together with numerical results for a test case, both in the
near and the far region. Comparisons with the results
given in Ref. 14 are also reported.

2. THEORETICAL ANALYSIS
Figure 1 shows the geometrical layout of our problem: A
monochromatic plane wave with wavelength l impinges
on a dielectric circular cylinder of radius a and refractive
index nc . The cylinder axis is placed at a distance h
from a general reflecting flat surface. This diffractive
structure is assumed to be infinite along the y direction,
which is parallel to the cylinder axis, so that the problem
is reduced to a two-dimensional form. Moreover, we uti-
lize the following dimensionless variables:

j 5 k0x, z 5 k0z, x 5 k0h, r 5 k0r, (1)

where k0 5 2p/l is the wave number in vacuum. In the
following, n 5 k/k0 denotes the unit vector associated
with a typical plane wave whose wave vector is k, while
n i and n' are the components of n parallel and perpen-
dicular to the reflecting surface, respectively. The latter
is characterized by a complex reflection coefficient G,
which is a function of n i . Moreover, ki is the wave vector
of the incident field, and f denotes the incidence angle
with respect to the x axis. The polarization of the fields
involved is assumed to be either TM or TE (electric or
magnetic field directed along the axis of the cylinder). In
1997 Optical Society of America
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both cases the amplitude of the field parallel to the cylin-
der axis is represented by the scalar function V(j, z).
To solve the scattering problem, we consider the field

V(j, z), which is due to the interaction between the inci-
dent plane wave and the diffractive structure, as the sum
of five contributions, say,

• Vi : field of the incident plane wave;
• Vr : field that is due to the reflection of Vi by the

plane surface;
• Vc : field present inside the cylinder;
• Vd : field diffracted by the cylinder;
• Vdr : field that is due to the reflection of Vd by

the plane surface.

This approach parallels the one used in Ref. 1 for the
case of a perfectly conducting cylinder. Here, however,
we have introduced the term Vc(j, z), which accounts for
the field distribution inside the cylinder.
The boundary conditions on the cylinder surface can be

easily imposed by expressing each contribution to the to-
tal field in a reference frame having cylindrical symme-
try. The expressions of Vi , Vr , Vd , and Vdr are dis-
cussed in Ref. 1 and have the form

Vi~j, z! 5 V0 (
m52`

1`

im exp~2imf!Jm~r!exp~imu!, (2a)

Vr~j, z! 5 V0G~n i
i!exp~in'

i 2x! (
m52`

1`

imJm~r!

3 exp@im~u 1 f 2 p!#, (2b)

Vd~j, z! 5 V0 (
m52`

1`

im exp~2imf!cmCWm~j, z!,

(2c)

Vdr~j, z! 5 V0 (
m52`

1`

im exp~2imf!cmRWm~2x 2 j, z!

5 V0 (
m52`

1`

im exp~2imf!cm (
l52`

1`

ilJl~r!

3 exp~ilu!RWl1m~2x, 0!. (2d)

Fig. 1. Geometrical layout of the scattering problem.
In these equations V0 is the amplitude of the incident
field, (r, u) are coordinates of the polar reference frame
centered on the cylinder axis, Jm is the Bessel function of
the first kind of mth order, and the coefficients cm repre-
sent the unknown quantities of our problem. Moreover,
the function CW and RW are defined as1

CWm~j, z! 5 Hm~r!exp~imu!, (3a)

RWm~j, z! 5
1
2p E

2`

1`

G~n i!Fm~j, n i!exp~in iz!dn i ,

(3b)

where Hm(x) is the Hankel function of the first kind of
mth order, while the function Fm(j, n i), representing the
angular spectrum of cylindrical functions CWm(j, z), is1,2

Fm~j, n i! 5
2 exp~in'j!

n'

exp~2im arccos n i!. (4)

The field transmitted into the cylinder can be written as16

Vc~j, z! 5 V0 (
m52`

1`

im exp~2imf!dmJm~ncr!exp~imu!,

(5)

with unknown coefficients dm .
Now, from Eqs. (2a)–(2d) and (5), it is straightforward

to impose the appropriate boundary conditions on the sur-
face of the cylinder in order to determine the values of the
cm and dm coefficients. Let us analyze this procedure in
some detail for both polarization states. If we denote
with ¹̃ the gradient operator with respect to the dimen-
sionless coordinates (j, z), Maxwell’s equations read as1

E~j, z! 5 ~iZ0 /n
2!¹̃ 3 H~j, z!, (6)

H~j, z! 5 2iY0¹̃ 3 E~j, z!, (7)

Z0 and Y0 being the characteristic impedance and admit-
tance, respectively, of the medium outside the cylinder,
while n is defined as

n 5 H 1 outside the cylinder

nc inside the cylinder
. (8)

The expression of the curl operator in cylindrical coordi-
nates is

¹̃ 3 @V~j, z!ŷ0# 5 ~1/r!]uV~j, z!r̂0 2 ]rV~j, z!û0 ,
(9)

where ŷ0 , r̂0 , and û0 are the unit vectors associated with
the cylindrical reference frame. In the case of TM polar-
ization, we have E(j, z) 5 V(j, z)ŷ0 . The boundary
conditions, arising from the continuity of the tangential
components of electric and magnetic fields, have to be
written as

~Vi 1 Vr 1 Vd 1 Vdr!r5ka 5 ~Vc!r5ka ,

~]rVi 1 ]rVr 1 ]rVd 1 ]rVdr!r5ka 5 ~]rVc!r5ka .
(10)

For TE polarization the roles of V(j, z) and ]pV(j, z) are
interchanged, so that the boundary conditions become
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~Vi 1 Vr 1 Vd 1 Vdr!r5ka 5 ~Vc!r5ka ,

~]rVi 1 ]rVr 1 ]rVd 1 ]rVdr!r5ka 5 ~1/nc
2!~]rVc!r5ka .

(11)

By using Eqs. (2a)–(2d), (5), (10), and (11), after some al-
gebra we obtain the following linear system for the un-
known coefficients cm and dm :

(
l52`

1`

Aml
~1 !cl 2 Gm

~1 !dm 5 bm
~1 ! , (12a)

(
l52`

1`

Aml
~2 !cl 2 Gm

~2 !dm 5 bm
~2 ! , (12b)

where the superscripts (1) and (2) refer to the boundary
conditions on the field and on its normal derivative, re-
spectively. Here

Gm
~1 ! 5 exp~2imf!

Jm~nc ka !

Hm~ka !
, (13a)

Gm
~2 ! 5 p exp~2imf!

Jm8 ~nc ka !

Hm8 ~ka !
, (13b)

where the prime denotes differentiation and p is defined
as

p 5 H nc for TM polarization

nc
21 for TE polarization

. (14)

Furthermore, the coefficients of systems (12) are

Aml
~1, 2! 5 exp~2ilf!@dml 1 il2mTm

~1, 2!~ka !

3 RWl1m~2x, 0!#, (15a)

bm
~1, 2! 5 2Tm

~1, 2!~ka !$exp~2imf! 1 G~n i
i!

3 exp~in'
i 2x!exp@2im~p 2 f!#%, (15b)
where the symbol dml denotes the Kronecker delta, while
the function Tm

( j) , which contains the information regard-
ing the boundary conditions, is defined as

Tm
~ j !~x ! 5 H Jm~x !/Hm~x ! for j 5 1

Jm8 ~x !/Hm8 ~x ! for j 5 2
. (16)

A way to solve systems (12) is to eliminate the coefficients
dm , thus obtaining the following linear system for the
sole cl coefficients:

(
l52`

1`

Dmlcl 5 Lm , (17)

where

Dml 5 Gm
~2 !Aml

~1 ! 2 Gm
~1 !Aml

~2 ! , (18a)

Lm 5 Gm
~2 !bm

~1 ! 2 Gm
~1 !bm

~2 ! . (18b)

In particular, Eq. (17) shows that the computational ef-
fort is the same as that for the perfectly conducting cylin-
der case. This will be confirmed by the numerical test
presented in the next section.
Once the cl coefficients are known, it is possible to

evaluate the internal field Vc by means of dm coefficients
in a straightforward way. Indeed, by subtracting term
by term Eqs. (12), we obtain

dm 5 2
1

Gm
~1 ! 2 Gm

~2 !

3 H bm~1 ! 2 bm
~2 ! 2 (

l52`

1`

@Aml
~1 ! 2 Aml

~2 !#clJ , (19)

and, by recalling Eqs. (14)–(16), after some algebra we get
the equality
Fig. 2. Comparison between the intensity values, in arbitrary units, at the cylinder surface, evaluated from the internal (solid curve)
and external (triangles) expansions, where l 5 632.8 nm, f 5 30°, nc 5 1.46, ka 5 3.95, and N 5 12. The plane surface is the in-
terface between vacuum and a homogeneous dielectric medium (silicon, ns 5 3.8).
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dm 5
Jm~ka !Hm8 ~ka ! 2 Jm8 ~ka !Hm~ka !

Jm~nc ka !Hm8 ~ka ! 2 pJm8 ~nc ka !Hm~ka !

3 H 1 1 G~n i
i!exp~in'

i 2x!exp@im~2f 2 p!#

1 (
l52`

1`

RWl1m~2x, 0!il2m exp@i~m 2 l !f#clJ ,
m 5 0, 61, 62, ... . (20)

From Eq. (20) it is easily seen how the effect of the plane
surface on the internal field is contained in the last two
terms in curly braces, which take into account the re-
flected fields Vr and Vdr . It should be noted, in fact,
that, in the absence of the surface (G [ 0), these terms
vanish, and the expression of dm tends to be the same as
that for the isolated cylinder.16

By knowledge of the cm and dm coefficients (m
5 0, 61, 62, ...), the scattering problem is exactly
solved. Of course, since the outlined procedure involves
infinite series, some truncation criterion is to be adopted.
As we shall see in the next section, one can use the same
criteria that proved to be adequate for other problems in-
volving scattering from cylinders.1,17–19

In Section 3 we will present some numerical results,
and we will show that for obtaining an accurate descrip-
tion of the electromagnetic field, the required value of the
index of truncation of the series can be reasonably small.
In particular, we will use as a test case one of the prob-
lems studied by Taubenblatt by means of the so-called
coupled-dipole method.14 As we shall see, the agreement
between our results and Taubenblatt’s is excellent. Fur-
thermore, a complete and accurate two-dimensional map
of the electromagnetic intensity inside the cylinder is also
presented. The importance of such information was
stressed by Owen et al. for the case of an isolated dielec-
tric cylinder,4 and it arises in a wide range of practical
applications.8–10

3. NUMERICAL RESULTS
The case under test is one of those studied in Ref. 14, i.e.,
the scattering problem of a monochromatic plane wave of
wavelength l 5 632.8 nm by a dielectric circular cylinder
of SiO2 (nc 5 1.46), whose radius is a 5 0.35 mm, placed
onto a flat substrate of silicon (refractive index
ns 5 3.8). The incidence angle of the impinging wave is
f 5 30°, and the reflection coefficient of the surface has
been evaluated by means of the well-known Fresnel
formulas.16 The polarization is assumed to be TM.
It is well known that, in the truncation of series relat-

ing to scattering from circular cylinders, the truncation
index, say N, can be related to the cylinder radius a by
the rule of thumb N . 3ka.1,17–19 We verified that this
choice leads to good results also in the present problem by
controlling the convergence of the expansion coefficients
for increasing values of N.
To show the good matching between the internal (Vc)

and the external (Vi 1 Vr 1 Vd 1 Vdr) field on the cyl-
inder surface, the squared modulus of the electric field
(here and in the following loosely referred to as the inten-
sity) is reported in Fig. 2 for r → ka 2 (internal expan-
sion) as a solid curve and for r → ka1 (external expan-
sion) as triangles for values of u ranging from 0° to 360°.
Figure 3 shows the far-zone diffracted intensity I as a

function of the scattering angle u (see Fig. 1) for the case
under test, where for the sake of comparison we have
used a different system of visualization. Our result is in
perfect agreement with Fig. 2 of Ref. 14, which refers to
the same geometry. It should be stressed that, even
though the coupled-dipole method gives the far-zone field
produced by the scattering from arbitrarily shaped scat-
terers, it requires heavier and heavier computational ef-
fort with increasing cross-section dimensions.
Finally, Fig. 4 shows a two-dimensional plot of the in-

tensity distribution inside the dielectric cylinder.3–10

4. CONCLUSIONS
A very efficient technique has been described to treat the
general scattering problem by a circular dielectric cylin-

Fig. 3. Far-field diffracted intensity I as a function of the scat-
tering angle u for the case of Fig. 2. The same presentation of
the values has been chosen as that of Ref. 14.

Fig. 4. Intensity distribution inside the dielectric cylinder for
the case of Figs. 2 and 3. For clarity, the field outside the cyl-
inder has been set to zero.
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der near an arbitrary plane interface. Both polarizations
may be studied, and both the near and the far field may
be obtained. A comparison with results in the literature
was presented, showing very good agreement. The case
of a lossy cylinder could be treated by means of the same
procedures by suitably choosing the complex refractive in-
dex of the cylinder.
Since an arbitrary scatterer may be simulated with a

suitable array of circular cylinders,14,18 work is in
progress to generalize our method to deal with several di-
electric cylinders arbitrarily placed in the presence of a
flat surface, as was done for the case of perfectly conduct-
ing cylinders.20 Furthermore, by making use of a plane-
wave spectrum expansion, the method could be extended
to cases in which the incident field differs from a single
plane wave.
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