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A general approach is presented for treating the two-dimensional scattering of a plane wave by an arbitrary
configuration of perfectly conducting circular cylinders in front of a plane surface with general reflection prop-

erties.

cations both in optics and in microwaves.

1. INTRODUCTION

The problem of scattering of a plane wave by sets of per-
fectly conducting indefinite circular cylinders with paral-
lel axes in an isotropic and homogeneous medium has
been treated by various authors. The case of an infinite
grating of circular cylinders was studied in Refs. 1 and 2.
Some numerical data on transmission coefficients were
obtained in Ref. 3. The limiting case of wires, i.e., cylin-
ders whose radii are negligible with respect to the wave-
length, was considered for an infinite grid by Wait,* and
scattering from a finite number N of parallel conducting
wires was studied in Refs. 5-7. The case of wires has
great practical importance because scatterers of arbitrary
shape can be simulated, and even built, by means of a
suitable wire grid.® Some rules of thumb have been
given to optimize the dimensions of the equivalent grid.®®
For cylindrical structures with radii comparable with or
larger than the wavelength the wire approximation can-
not be used, and one must resort to a rigorous approach.
The case of two cylinders was treated in Refs. 10-12.
The multiple-scattering approach was introduced in Refs.
13 and 14, while in Ref. 15 the problem of N conducting
circular cylinders in free space was solved. A compre-
hensive review of this problem is presented in Ref. 16.
Numerical solutions for two-dimensional scattering by
structures of arbitrary shape are presented in Refs. 17—
20. Finally, the problem has been tackled in Ref. 10 for
the case of dielectric cylinders, in Ref. 21 for application
to parallel glass fibers, and in Ref. 22 with a multiple-
scattering approach.

In the presence of a plane interface, owing to the vari-
ous geometrical features of the interacting waves and
bodies, the solution of the scattering problem is a more
difficult task. However, several results can be found in
the literature for particular cases. For example, an infi-
nite wire grid parallel to the interface was treated by
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The method exploits the angular spectrum representation of cylindrical waves and turns out to be
fairly efficient, as demonstrated by a number of examples.
© 1996 Optical Society of America.

Our approach seems promising for several appli-

Wait for cases of both a perfectly conducting plane?? and a
vacuum-dielectric interface.?* Furthermore, for the case
of a single cylinder in front of an interface, the problem
has been approached with various techniques.25~30
When the surface coincides with the interface between
vacuum and a dielectric homogeneous medium or when it
is a real conducting plane, solutions are available also for
noncylindrical objects.?13* In addition, partially buried
scatterers have recently been considered.?3%

Among the several applications of gratings in free
space we quote Refs. 37-39, where the grids are used as
couplers and mirrors. A wide range of applications for
conducting or dielectric grids is represented by the simu-
lation of cylindrical objects.*®*! The theory of scattering
by cylinders in the presence of an interface has been ap-
plied to the detection of defects in the semiconductor
industry.*>*® Finally, in recent years metallic arrays
have been proposed as quasi-optical launchers of lower-
hybrid waves for microwave heating of thermonuclear
plasmas,**% as an alternative to the customary wave-
guide phased arrays.

In Ref. 25 we presented a general technique to solve the
plane-wave scattering problem for a perfectly conducting
circular cylinder in front of an arbitrary reflecting plane
interface for both TM and TE polarization states. Such a
technique proved to be fairly efficient and accurate.

In this paper we generalize that analysis to the case of
a finite number N of perfectly conducting circular cylin-
ders with possibly different radii. The axes of the cylin-
ders can be arbitrarily placed with respect to the inter-
face. In Section 2 the theoretical analysis is outlined and
expressions of the scattered fields are given. The far-
field limit is also considered. In Section 3 the conver-
gence problem is treated and numerical results are pre-
sented for the far field. Comparisons are made with the
results obtained for some particular cases in which alter-
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native approaches are used. Our method allows us to
deal with reflecting surfaces of general behavior, such as
lossy, anisotropic, and multilayered interfaces. It seems
particularly efficient in terms of computation time, stabil-
ity, and reliability of the results.

2. THEORETICAL ANALYSIS

A. General Theory

In Fig. 1 the geometrical layout of the problem is
shown: N perfectly conducting circular cylinders with
radiia, (¢t = 1,. .., N) are placed in front of the reflect-
ing surface. The axis of each cylinder is parallel to the
y axis, and the structure is assumed to be infinite along
the y direction, so that the problem is reduced to a two-
dimensional form. The incident field is a monochromatic
plane wave, whose wave vector k’ lies in the x—z plane.
The polarization is said to be TM (with respect to the axis
of each cylinder) or E when the electric field is directed
along the y axis and TE or H when the magnetic field is
axially directed. ¢ is the angle between the wave vector
k' and the x axis, and thus K’ is related to ¢ through the
expressions

ki =k sing, ki =k cos g, (1)

where the symbols L and || refer to the orthogonal and the
parallel components, respectively, of a vector with respect
to the interface. The presence of the interface is de-
scribed by the complex reflection coefficient I'(n), where
n = k/k, k being the wave vector of a plane wave incident
on the surface and £ = 2#/\ being the wave number.

In the following, for the sake of brevity, dimensionless
coordinates ¢ = kx, (= kz will be used. Let
p? = (5?, {?) (¢t =1,..., N)bethe position vector of the
axis of the tth cylinder in the main reference frame
(0, & ¢) (MRF from now on), and p, = (&, {)
(t=1,..., N) be the typical position vector in the
frame centered on that cylinder (RF, from now on). It is
convenient to choose the ¢ axis of the MRF lying on the
reflecting surface. In the following, V (¢, {) stands for
the component of the electromagnetic field parallel to the

N

(&)

Fig. 1. Geometry of the problem and notation used throughout
the paper.
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y axis; i.e., V = E, for TM polarization and V = H,, for
TE polarization. By using the same procedure as in Ref.
25, we will express this field as the sum of four contribu-
tions; then we will expand each of them in terms of cylin-
drical functions centered on the origin of each RF,. This
will allow the imposition of the boundary conditions on
the surface of each cylinder to be satisfied in a simple
way. Let us analyze separately the four contributions to
the field:
Incident field V;. The incident field has the form

Vi(§, {) = Vo exp(in’ & + inf0), (2)

where V) is the complex amplitude of the incident field in
the origin of the MRF. Since ¢ = 5? + ¢, and
{ = {? + ¢, (see Fig. 1), Eq. (2) can be written in the
RF, as
Vilé, ©) = Vo exp(ini & + inj{})exp(in' & + inj¢,)
+oo

Vo exp(inig? + inﬁ(?) Z ™

X exp(—ime)d,,(p;)exp(imI,), 3)

where (p,, 9,) are polar coordinates in the RF, and use
has been made of the expansion of a plane wave in terms
of Bessel functions J,, .47 We stress that Eq. (3) repre-
sents the field associated with the point that has coordi-
nates (¢, {) in the MRF as a function of the coordinates
(&, ) in the RF,.

Reflected field V,. The field due to the reflection of
V. by the surface is

V(& ) = VoI(n))exp(—in' & + in[{). (4)
By proceeding in the same way as for the incident field,
we obtain
V(& §) = Vol (njexp(—in & + ini(f)
X exp(—inigt + inﬁg”t)

= VoI'(n))exp(—in' & + ini))

+o0
X D, i™ exp(—im®)

X o, (p)exp(im9,), (5)

where ¢ = 7 — ¢ denotes the angle of propagation of the
reflected plane wave.

Diffracted field V. This field can be written as the
sum of the fields diffracted by each cylinder, which, in
turn, is expressed by means of a superposition of cylindri-
cal functions with unknown coefficients c,,,. That is,

N +o0
Val&, 0) = Vo D>, D i™ exp(—ime)c g CW,u (&, &),

s=1 m=—»

(6)

where CW,,(&,, ;) is the cylindrical function?
CW,. (&, &) = Hi(py)exp(im ;) (7)
and H f,}) is the outgoing Hankel function.*” By using

Graf’s formula*® we can write all the cylindrical functions
relevant to the sth cylinder (with s # ¢) in RF,; i.e.,
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+o0

V&, 0=V, D,

m=—o

i" exp(—ime)c,,,CW,,. (&, )

+VOE 2

m=—»

eXp _lm(»o)csm

+o

X exp(imdy) X (“1'HLL (pa)

X exp(il 9g)d;(p;)exp(—il 3,), (8)

where p,, and 3, are shown in Fig. 1. By interchanging
indexes m and / in the double sum, we obtain

+o0

Vi, 0=V,

m=-—o

™ exp(—im@)c;, CW, (&, £;)

N +o0

+V, 2 2 il exp(—ilp)cy

1 I=—»

~+oo

x > HWY ,(ps)expli(l + m)d,]

X (=) (p)exp(—im9,); ©

taking into account the relation J_,(x) = (—=1)™J,,(x)
and replacing m with —m in the last sum, we obtain

Vd(‘f, g) = i eXp( _im(P)cthWm(gt, {t)

N +oo

+V, E > il exp(—ilp)ey

1 1=~
t

#\I

+o0

X 2 CWip(Ears L m(po)explim ),

10)

where (&,,, {,;) are Cartesian coordinates corresponding
to (pg, U5:). After some algebra, from Eqgs. (7) and (10)
it is possible to obtain the more compact form

+o0 N +oo

Vil O =V Zw Jm(pt)exp(imﬂt); ,:z,x 4

X exp(_il(p)csl cwl*m(‘fst’ gst)

(1)(Pt)

X(]-_gst)—"_ 5lmJ(t)

(1D

The interaction between the sth and ¢th cylinders is con-
tained in the term CW; _ , (&, {)(1 — &), which is a
consequence of Graf’s formula,*® giving the expression of
a cylindrical wave emitted by the sth cylinder in the
RF,. When all cylinders can be considered to be nonin-
teracting, owing to the vanishing of the interaction term,
the field (11) reduces to the superposition of N fields
evaluated by means of the classical formula for an iso-
lated cylinder.*® For example, this happens when the
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mutual distances between the cylinders are large enough,
owing to the behavior of the Hankel functions.?®
Diffracted—reflected field Vg,.. Since the diffracted
field V; has been expanded in terms of cylindrical outgo-
ing waves [see Eq. (6)], but the reflection properties of the
plane of discontinuity are generally known for plane inci-
dent waves,? an expression of V;, may be obtained by us-
ing the analitycal plane-wave spectrum of CW,,
functions.?>®? In particular, in Ref. 25 we showed that
the field that is due to the reflection of a typical cylindri-
cal wave CW,,(&,, {,) by the interface can be written as
RW, 2x, — &, ), RW, (& ) being the function de-

fined as
RW,.(§, 0 = 5= f (n)F (&, nyexp(in f)dn,,
(12)
where x, = —¢; denotes the distance between the axis of

the sth cylinder and the reflecting surface (see Fig. 1) and
F ., (¢, n)) is the angular spectrum of the cylindrical func-
tion CW,,, defined as

Fm(g’ I’L”) = f_ CWm

By considering the reflection of each cylindrical wave and
summing all the contributions, from Eq. (6) we obtain

VOE 2

X CstWm(2Xs - 689 gs) (14)

Equation (14) shows that the diffracted—reflected field
can be thought of as a superposition of the fields dif-
fracted by “image” cylinders centered at the points
(—fg, g“g), for s =1,..., N. These fields are modu-
lated by the presence of the interface through the defini-
tion of RW,, functions [see Eq. (12)].

Taking into account the explicit expression of the F,,

functions,?®?2 i.e.,

(¢, Dexp(—in )ds.  (13)

Vdr(gy g) exp(flmgo)

2 exp(in &)

F,(¢n) = . exp(—im arccos n),
ny e (—», +o), (15)
we have
RW,.(2xs — &, &)

- L +xr Fo(-28 - ¢+ &
“on . (nPF (=26 — &+ &, ny)
X exp(finug“g)exp(in”g)dn”
1 +eo
= 9a le L(n)F,(xs, ny)

{Hlexp(—in &dn. (16)

Finally, taking into account that ¢&= ¢ + ¢,
{ = g? + ¢, and 5? = —x;, from Eq. (16) the field due to
the reflection of a typical cylindrical wave centered on the
s-th cylinder written in the RF, turns out to be

X explin({ —
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RWM(ZXS - gs’ {S)
1 oo 0
= %f T(n)F,(xs, npexpling(L — ¢°)]
X explin, x,lexp(—in & + in\{,)dn,.

The last exponential in this equation represents a plane
wave and can be easily expressed in terms of Bessel func-
tions centered on RF, as
+0o0
exp(—in & +imd) = 2, i exp(=ili)J(p)explil,),
(18)

where ¢ = 7 — ¢, the angle ¢ being defined as
¢ = arcsinn,V ny € (—o, +). Thus Eq. (17) becomes

RWm(ZXs - gs’ {s)
- . . ~1)!
S ii(pexplilt) 5

=—

40
X f r(nH)Fm(Xs + Xt > nl\)

x expliny (&) — ¢))]exp(il arcsin ny)dn,
+o0

) 1
2 Julpexplild) 5

+o
X f F(n)F; 1 n(xs + Xer 1)

x exp[in (¢} — £)]dn,

+oo

2 Tp)espLIRW: (xs + Xes & = 8,

(19
where use has been made of Eq. (15) and of the identity?®

exp(i arcsin n)) = i exp(—i arccos n;). (20)

In a sense, Eq. (19) is a generalization of Graf’s formula
for the reflected cylindrical waves. By substituting from
Eq. (19) into Eq. (14) and by interchanging indices m and
[, after some algebra we can write

+oo

Varl€, O = Vo 2 Jn(plexp(imd,)

m=—o
N +»

x > X il exp(—ilg)c RW, . ,,

s=1[l=-»

X (xs + x5 & — 20 (21)

If the cylinders are far enough from the reflecting sur-
face, the field (21) can be neglected, because the RW; . ,,
functions vanish for large values of the first argument, as
can be seen starting from their definition [see Egs. (12)
and (13)]. In the following, however, we shall not use
such an approximation in our numerical results.

So far we have written all the contributions to the total
field in RF, (¢ = 1,...,N). Now we have to impose suit-
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able boundary conditions on each cylindrical surface. To
do this we will write the final expression of the total field
V(&, 0 by using Egs. (3), (5), (11), and (21):

V(S, {) Vi(f, g) + Vr(§7 g) + Vd(é? g) + Vdr(gv g)

+oo

Vo 2 Julp)exp(imd,)

X [im exp(—ime)exp(in’ & + inl?)

+ i™ exp(—im¢")T(nl)exp(—inl&) + inif?)

N +o0
+ 2 2 i ep(=ile)ew] CWp (e, L)
X (1 - 5st) + RWl+m(Xs + Xe» f? - 58)
H(l)(Pt)
+ 8 8im ——— |- 22)
O J o) (

In the double sum of Eq. (22), the first two terms in the
square brackets take account of the cylinder—cylinder and
the cylinder—interface interactions, respectively. As we
remarked after Eq. (14), the importance of the former in-
teraction term increases with the density of the scatter-
ers, according to general considerations regarding the
phenomenon of enhanced backscattering.2®?®> The pres-
ence of the reflecting surface gives rise to the latter inter-
action term, which increases on reduction of the distance
between the cylinders and the interface.

The boundary conditions are defined by the following
equations:

V|pt:kat =0 (t=1,... N) for TM polarization
aptV|pt:kat =0 (¢t=1,... N) for TE polarization’
(23)

By substituting from Eq. (22) into Eq. (23), after some
algebra we obtain the following linear system for the un-
known coefficients c;

% § Ao Rt 0, =1, =2,
s e mi€st = Dy t = 1’ . N ,
(24)
where
A?rim = il exp(filﬁp){[cwl—m(gst’ gst)(l - 5st)
+ I?im]Gm(kat) + 5st51m}’ (253)
I} = RW,(xs + xe» & — £9), (25b)
B! = —i™ exp(in{{))G ,(ka,)
X [exp(inif?)exp(—imgo)
+ T(nj)exp(—in’ &)exp(-ime)],  (25¢)

and the function G,,(x), which refers to the polarization
state of the field involved, is defined as?®
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o (x)
—_— for TM polarizati
H () or polarization
G,,(x) = I (x) , (26)
(IlnT for TE polarization
H, " (x)

where the prime denotes derivation.
For the quantities I} in Eq. (25b) the following symme-
try property can be derived (see Appendix A):

Iy = (-1)Pr%,. (27)

It is useful to note that, if I' is constant with respect to
n|, the quantities (25b) can be evaluated analytically as

IS = TCW,(xs + x¢» & — 40 (28)

i.e., the V, field reduces to the field diffracted by N im-
age cylinders placed at symmetrical positions with re-
spect to the reflecting surface under the action of V, as
the incident field. In particular, this is the case for a per-
fectly conducting medium, for which I' = —1.

After a suitable truncation of the series in Eq. (24), to
be discussed in Section 3, such an equation system can be
solved. Then it is possible to evaluate the electric (mag-
netic) field for TM (TE) polarization by means of Egs. (2),
(4), (6), and (14) everywhere outside the cylinders. In ad-
dition, the transverse-field components could be evalu-
ated along the lines discussed in Ref. 25. In the following
we focus our attention on the far-field limit, where the ob-
tained expressions assume a very simple form.

B. Far-Field Limit

The total diffracted field can be easily computed by means
of Egs. (6) and (14),

VENE ) = Va(& O + V(& 0

N +o
= VO E z ésm[cwm(gs, gs)

5=1 m=—
+ RW,(2xs — &, &), (29)
where for the sake of compactness, coefficients
Csm = 1™ exp(—imo)cg,, (30)
have been introduced. With reference to the notation

shown in Fig. 2, in the far-field limit, taking account of
the asymptotic expansion of cylindrical functions,??5*

172
CW,,(&, &) = ( ) i™™ exp(ips)exp(imd,),

mPs
(31a)
_os\ 12 _
RWm(2Xs - ‘i:sy gs) = I_) ) F(Sin ﬁs)iim
X exp(ip,)exp(imd,), (31b)

and considering the following approximations,
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Fig. 2. Geometry for the far-field analysis.

—=— ==, Y,=9, Y,=u-9,

exp(ip,) = exp(ip)exp(iy, cos ¥ — i{g sin ),

exp(ip,) = exp(ip)exp(—iy, cos ¥ — ig”g sin 9), (32)

Eq. (29) becomes

1/2
Vi, f):Vo(ﬂ__p) exp(ip)g(9),  (33)

where the function

N +oo
g(9) = 2 2 i MCypm exp(ixs cos I—if2 sin ¥)

s=1 m=-—x
X [exp(im¥) + (—1)"T'(sin &)
X exp(—i2x, cos 3exp(—im9)] (34)

represents the angular far-field radiation pattern.

3. NUMERICAL RESULTS

Equations (24) and (25) solve in a rigorous way the plane-
wave scattering problem for N perfectly conducting circu-
lar cylinders placed near a plane interface with general
reflection properties. However, although no approxima-
tions have been introduced in the theoretical basis of the
method, in order to implement it we unavoidably have to
truncate the series in Eq. (24). Physically, this means
that the field diffracted by the sth cylinder will be ex-
pressed by a finite sum of CW,, functions [see Eq. (6)], let-
ting m run from —M, to M., M, being the truncation or-
der for the sth cylinder. The dimension of the resolving
linear system in Eq. (24) turns out to be

N N
> @M, +1)=N+2> M,. (35)
s=1 s=1

As a matter of fact, M, depends on the size of the sth
cylinder,*® and therefore the algorithm complexity grows
with the size and the number of cylinders. In order to
give a quantitative criterion for choosing M,, we per-
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Fig. 3. Scattering configuration used for the convergence test:
N=3; ka;=1, x1=10, {; = 10; kay =3, xo =5, {3 = 0;
kas = 5, x5 = 15, {3 = —15. The refractive index of the dielec-
tric medium is n = 1.5, and the incidence angle of the impinging
plane wave is ¢ = 45°.

O p=1
1.2 O p=2
& u=3
X n=4

-20 -15 -10 -5 0 5 10

o el KKK m
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formed several numerical tests for both the TM and the
TE polarization states. Figure 3 shows the geometrical
layout corresponding to a typical convergence test:
Three cylinders, with ka; = 1, kay = 3, kaz = 5, are
placed at distances y; = 10, xo = 5, and y3 = 15 from
the reflecting surface. The latter is a vacuum—dielectric
interface, whence the reflecting coefficient I'(n|) is given
by the well-known Fresnel formulas. The { coordinates
of the three cylinders are ¢; =10, {3 =0, and
{3 = —15. The refractive index of the dielectric medium
is n = 1.5, and the incidence angle of the plane wave
is ¢ = 45°. As suggested in Refs. 15-17, we set
M, = pka, (s = 1,2,3), ubeing an integer factor. Fig-
ure 4 shows the behavior of the modulus of the expansion
coefficients c,,, for all cylinders for u = 1, 2, 3, 4, for (a)
TM and (b) TE polarization.

It can be seen that the coefficients tend to stabilize
when u exceeds 2, and the same behavior has been ob-
served in most cases, so that the well-known rule'®¢ sug-
gesting the choice u = 3 seems to be a reasonable
compromise between accuracy and computational cum-

0p,=1
1.2 O p=2
A p=3
X n= 4

.
0 AT
-20 -15 -10 -5

(b)

Fig. 4. Behavior of the modulus of the expansion coefficients c,, for the configuration illustrated in Fig. 3 for increasing values of the

truncation order M, = uka, for (a) TM and (b) TE polarization (s = 1,2,3; m = —M,, . .

L M),
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(a)

-90 ~60 T30 o 30 60 90
d [deg]

o[ N/ V

(b)

-96 -60 ‘ l—30 0 30 60 90

9 [deg]
Fig. 5. Semilogarithmic plot [arbitrary units (a.u.)] of the scat-

tering cross section og as a function of the scattering angle ¢ for
the configuration illustrated in Fig. 3, for (a) TM and (b) TE po-
larization. ¢ = 45°, n = 1.5.

h,

Fig. 6. Geometrical layout for the study of two interacting cyl-
inders on a perfect mirror.

bersomeness. It should be stressed, however, that for
some particular situations, especially for small cylinder—
interface distances in TE polarization, convergence is
achieved with values of u up to 4 or 5. In Fig. 5 we show
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the scattering cross section® oy for the test case of Fig. 3
as a function of the scattering angle & = 7 — 9 (see Fig.
2), for (a) TM and (b) TE polarization.

We shall now illustrate the main computational advan-
tages and limitations of the proposed method. An impor-
tant problem to be considered is the numerical eval-
uation of the matrix elements I3, [see Egs. (25a) and
(25b)], which actually represents the most limiting factor
of the present method, at least from a merely computa-
tional point of view. Indeed, these functions are defined
by means of integrals of oscillating functions, whose
amplitude and frequency depend strongly on the
order [ + m and on the mutual distances ¢ — °
(s,t=1,2,..., N), respectively.

As shown above, the maximum value of [ + m is re-
lated to the radius of the cylinders, and the transverse
(i.e., in the ¢ direction) extension of the whole diffractive
structure fixes the maximum value of { ? - {2 . High val-
ues of I + m or {0 — ¢° make the evaluation of the in-
volved integrals rather cumbersome, and special integra-
tion routines based on a combined use of Gaussian
techniques and extrapolation methods have been
developed.?® We tested the algorithm for values of M, up
to some tens, corresponding to cylinders whose diameters
are of the order of some wavelengths. It should be
stressed that in such cases neither the Rayleigh nor the

AAN N A (a)
f
-60 ; -3,0i 0 3‘;0
] (b)
L/ YU NY ‘ f\ /A
, i A
o !

L

-90 T 0 30 60 90
S [deg]

Fig. 7. Semilogarithmic plot (a.u.) of the scattering cross section

og as a function of the scattering angle ¢ for the configuration
illustrated in Fig. 6, for (a) TM and (b) TE polarization.
ka = 7, kh = 7, ¢ = 30°, kd = 30ka.
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(a)

A
T

T~
B Rt ST Py

SRR SRS S

-90 -60 -30 0 30 60 90

—
T el

-90 “60 -30 0 30 60 90
O [deg]

Fig. 8. Same as in Fig. 7, except that kd = 12ka.

Kirchhoff approximation (valid for very small or very
large objects, respectively) can be used. To give an idea
of the execution time, we report that the calculation of the
2000-point plots of Fig. 5 requires ~20 s on a HP-9000
Apollo workstation, with use of a FORTRAN code.

In next subsections we present two examples of typical
problems with which our method can be profitably used.
The first example concerns the interaction between two
cylinders lying on a reflecting surface; the second one il-
lustrates some scattering properties of a finite array of
cylinders near a dielectric interface.

A. Study of the Mutual Interaction of Two Cylinders
on a Mirror

The study of multiple scattering by two objects has been
the subject of several studies.!®151322  Ag we pointed out
in Section 1, a large part of them dealt with scatterers in
a homogeneous medium, but it is not easy to find similar
studies for the case of a plane of discontinuity placed near
the scatterers. Quite recently®” Valle et al. presented
some numerical results for the case of two perfectly con-
ducting circular cylinders placed onto a perfectly conduct-
ing flat substrate. The diffractive structure was illumi-
nated by a Gaussian beam, because their numerical
method, based on the extinction theorem, treats surfaces
of finite extension. In their case the diameter of the two
cylinders was equal to the wavelength, corresponding to
ka, = kay = , and cylinders were in contact with the
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surface, i.e., kh; = khy = m; the incidence angle of the
impinging field was ¢ = 30°. Figure 6 depicts the geom-
etry of the problem.

As pointed out in Ref. 57, such geometry is quite useful
to illustrate the physics of the interaction between the
two cylinders. The far-field pattern, indeed, is generated
by the interference of the fields diffracted by each cylin-
der, as in a Young two-slit interferometer. So, if the two
cylinders were noninteracting, the far-field diffracted in-
tensity would be simply given by four times the intensity
diffracted by a single cylinder, multiplied by the function
cos? 5(9), where 8(8) = kd/2 (sin & — sin ¢),°" kd denot-
ing the distance between the axes of the cylinders.

When the scatterers are far enough from each other so
that the mutual interaction can be neglected, the total
far-field diffracted intensity must look like the one ob-
tained by noninteracting cylinders, but the resemblance
is reduced as the distance kd decreases. Such behavior
is shown in Fig. 7 (kd = 307), Fig. 8 (kd = 127), and
Fig. 9 (kd = 4m), for (a) TM and (b) TE polarization. In
these figures the corresponding pattern for noninteract-
ing cylinders is shown, too (dashed curves). It can be
seen that, in general, the range of £d values for which the
interaction is not negligible is considerably wider for TE
than for TM polarization. This is essentially because for
TM polarization, boundary conditions force the electric
field to vanish on the mirror surface, whereas this is not
true for TE polarization, for which the magnetic field is to
be considered. This, in turn, implies that the field radi-
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Fig. 9. Same as in Fig. 7, except that kd = 4ka.
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Fig. 10. A finite grating parallel to the interface.
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Fig. 11. Semilogarithmic plot (a.u.) of the scattering cross sec-
tion og as a function of the scattering angle 9 for an optical grill
placed near a vacuum-—dielectric interface (see Fig. 10). n = 2,
¢ =0° N =10, ka = 1.0, kh = 3.0, kd = 7.0, for (a) TM and
(b) TE polarization.

ated by each cylinder (together with its image) and reach-
ing the other cylinder is smaller for TM than for TE po-
larization.
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The cases of Figs. 8 and 9 correspond exactly to those of
Figs. 2 and 3 of Ref. 57 except that a different incident
beam and a finite reflecting surface are considered there.
Taking into account the differences between the two mod-
els, our results show quite good agreement.

B. Study of Finite Diffraction Gratings
A particular arrangement of cylinders whose scattering
properties can be studied with the present approach is a
finite diffraction grating. It consists of N equidistant
equal cylinders whose axes lie on a plane parallel to the
reflecting surface (see Fig. 10). This structure is of con-
siderable importance in optics and microwaves. In par-
ticular, such a configuration turns out to be useful for ap-
plications in plasma physics*>*6 as well as in the study of
some aspects of light—-matter interaction such as en-
hanced backscattering®® and surface—polariton interac-
tion.58

Figures 11-13 show the scattering cross section og
as a function of the scattering angle 9 for a finite diffrac-
tion grating of N = 10 cylinders placed in front of a
vacuum—dielectric interface with refractive index
n = 2.0. The period of the grating is kd = 7.0, the
other parameters being ka = 1.0, kh = 3.0, ¢ = 0° (Fig.
11), ¢ = 30° (Fig. 12), and ¢ = 60° (Fig. 13). TM (a) and
TE (b) polarization states are depicted, and the refractive
index is chosen so as to give rise to an appreciable reflec-
tion.
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Fig. 12. Same as in Fig. 11, except that ¢ = 30°.
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Fig. 13. Same as in Fig. 11, except that ¢ = 60°.

_ In these figures, peaks can be observed at the angles
¥,, defined as

< . 2m
sin ¥,, = —sin ¢ + m —

P (m=0,=*1,+2,...),

(36)

corresponding to the propagation directions of the dif-
fracted orders.?® In particular, for normal incidence, i.e.,
¢ = 0°, diffraction orders with m = 0 and m = *1 are
present, the other ones being evanescent. On the con-
trary, for ¢ = 30° the order m = 1 becomes evanescent,
so that only the orders m = 0 and m = —1 can be seen.
For ¢ = 60° the order m = —2 becomes homogeneous
and appears in the far-field pattern. As is known, the
nonzero width of the peaks is related to the finite exten-
sion of the grating. This can be seen by comparing Fig.
13 with Fig. 14, where the same parameters have been
used, but in the latter case the number of cylinders is set
to N = 20, corresponding to a total extension that is
twice the previous one.

4. CONCLUSIONS

We have presented here an efficient method to treat the
problem of the plane-wave scattering by N perfectly con-
ducting circular cylinders in the presence of a plane of
discontinuity for the optical constants. The method,
based on the plane-wave spectrum of cylindrical func-
tions, allows the scattering problem to be tackled for a
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wide class of discontinuity surfaces (such as dielectric or
metallic interfaces, multilayered structures, and aniso-
tropic and lossy media) and for arbitrary sets of cylinders,
in both TM and TE polarization states.

Following analogous lines, the case of circular cylinders
characterized by a complex dielectric constant could be
treated as well, allowing, in particular, the interesting
case of real conductors to be studied. Such an extension
could be quite useful, because in the high-frequency limit,
especially for TE polarization, the approximation of per-
fect conductors may show lack of validity.

The method has been tested for several geometrical
configurations, showing good convergence properties,
computational efficiency, and high reliability. In particu-
lar, we have shown that the method can be profitably
used in studying some typical scattering problems, such
as cylinder—cylinder interaction and diffraction by finite
gratings in the presence of a reflecting plane. Our ap-
proach seems to be promising also for other applications,
such as antenna analysis and design, detection of defects
in semiconductors,*>*® and near-field optics?® and, with
suitable extensions, scattering by dielectric, possibly
lossy, cylinders on substrates.22” Moreover, it can be
applied to the modeling of arbitrary shaped cylindrical
scatterers by means of a suitable arrangement of circular
cylinders, following the lines suggested in Refs. 40 and 41.
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Fig. 14. Semilogarithmic plot (a.u.) of the scattering cross sec-
tion og as a function of the scattering angle 9 for the case shown
in Fig. 13, except that N = 20, for (a) TM and (b) TE polariza-
tion.
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APPENDIX A

Starting from Eq. (25b), and recalling Eq. (25a), we have
for I the following expression:

ts
IP

RW,(x; + x5, &0 — &)

1 e
5 J: C(n)Fy(x: + X5 1)

X expl[in (¢® — ¢0)]dn,

1 [+
o fﬁm F(n)F,(x: + xs, ny)

X exp[ —iny({) — £)1dn,

1 o
=5 T(—n)F,(xs + x¢» —1y)

x explin(¢) — ¢0)]dn,
1 [+

= % F(nH)(_l)pF—p(Xs + Xt n”)

X explin (&) — ¢(D)ldny = (=1)PI%,, (Al

where use has been made of the parity of the function
I'(n)) and of the following relation of functions F, :

Fp(X’ _n\l) = (_1)pF7p(X’ nH)' (A2)
The last equality in Eq. (A1) coincides with Eq. (27).
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