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Imaging of generalized Bessel-Gauss beams
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Abstract. DiŒerent kinds of Bessel±Gauss beam have been recently introd-

uced. By considering the eŒect of a lens on the ®eld, we analyse how these

diŒerent sets of ®elds transform into one another and illustrate how a super-

position model of Gaussian beams allows this transformation to be clearly

interpreted.

1. Introduction

Light beams, or more generally wave beams, are physical entities often met in

practical experience and represented by physicomathematical models. Nevertheless,

only a few of them have analytically simple behaviour in propagation and have

been the subject of theoretical analysis: the Gaussian beams [1, 2] and relatively

few other beams, both coherent [3±6] and partially coherent [7±9]. We recall,

among them, the non-diŒracting beams [10±13], which keep the same intensity

distribution while propagating. Unfortunately, these ®elds are not physically

realizable, because they carry an in®nite amount of power through any section

normal to the propagation direction. Moreover, any experimental realization

necessarily requires ®nite aperture elements limiting the propagation length over

which the beam is non-diŒracting [14±17]. All these reasons prompted the

introduction of related ®nite-energy beams, such as Bessel±Gauss beams (BGBs)

[18].

In recent work [19], some extensions of the fundamental BGB, that may ®nd

practical applications, have been introduced and studied in free propagation. We

brie¯y describe their essential features in the next section. We stress that

unconventional coherent beams, besides the interest occurring in their speci®c

name and usefulness, may be important as eigenmodes of cross-spectral density

functions [20]. When this happens, they assume the quality of coherent members

of an entire class of beams described by that cross-spectral density and may

enlighten us concerning the overall behaviour of the class. This is, for instance,

the case with the celebrated Gaussian beams, which are the coherent members of

the class of Gauss±Schell model beams [21, 22]. In particular, this is also the case

with the ordinary BGBs (whose de®nition is recalled in the next section) which
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are the coherent members or modes of the class of beams originating from

J0-correlated sources [23]. This feature adds further relevance to these coherent

beams.

The aim of this work is to show that the generalizations recently introduced

have a close interconnection that clearly appears when studying the classical eŒect

on the ®eld of a lens met on the propagation axis.

2. Extensions of Bessel-Gauss beams

We brie¯y quote and describe the expressions of the fundamental BGB and of

the above-mentioned extensions [19] and we add some ®nal unifying considerations.

(1) A BGB of order n is represented by the following distribution in cylindrical

coordinates r, v and z on the transverse plane z = 0:

Vn(r, v, 0) = Ain exp 1±
r2

w2
02 Jn(br) exp (inv), (1)

where A is a (possibly) complex amplitude factor, w0 and b are real

quantities and Jn is the Bessel function of the ®rst kind of integer order n.

From now on, we label these beams as ordinary BGBs. We recall that for

the case n = 0 the ordinary BGB has been interpreted as a superposition

of equiamplitude tilted Gaussian beams [18, 19], whose axes lie on the

surface of a cone around the propagation axis having a (small) semiaperture

or tilting angle

a = sinÅ1 1b

k2 , (2)

where k = 2p/l is the wavenumber. Higher-order beams can be obtained

by suitably dephasing the component beams.

It should be noted that tilted Gaussian beams may be related to the

recently introduced decentred Gaussian beams [24].

(2) A modi®ed BGB (see also [25]) has the following ®eld distribution on the

plane z = 0:

Vn(r, v, 0) = A exp 1±
r2 + a2

w
2
0 2 In12ar

w
2
0 2 exp (inv), (3)

where a is a positive constant and In is the modi®ed Bessel function of the

®rst kind of order n. These beams may be obtained, proceeding as before,

by superimposing Gaussian beams whose axes lie on the surface of a

cylinder of radius a [19].

(3) Finally, a generalized BGB has the following ®eld distribution on the plane

z = 0:

Vn(r, v, 0) = A exp 1±
r2 + a

2

w2
0 2 In312a

w2
0

+ ib2 r4 exp (inv). (4)

The generalized BGB may be considered as the superposition of Gaussian

beams whose axes, starting from the waists, generate the surface of a

frustum of a cone. The parameter a is now the radius of the base of the

frustum and b is related to the semiaperture of the cone as in equation (2)
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[19]. Note that, since the argument of In in equation (4) is complex, it is

immaterial whether we use ordinary or modi®ed Bessel functions, because

[26]

In(u) = (±i)nJn(iu), Jn(±u) = (±1)nJn(u), (5)

and similar relations hold, inverting the role of the functions Jn and In .

Moreover, for the same reason, the ®eld in equation (4) has a phase

distribution depending on r; therefore the plane z = 0 is not necessarily a

waist plane, the wave front there being not planar.

A ®rst glimpse into the intimate relationship among all these beams comes from

the following remark. An ordinary BGB, as observed before, is given by the

superposition of Gaussian beams lying on a cone whose apex is in their waist plane.

Thus, after propagation to a plane z = constant, the same component beams lie

on the frustum of a cone having its base on that plane, where (diŒerent from

the generalized BGB) they are each endowed with a parabolic curvature. In fact, the

ordinary BGB propagated at a distance z is, in the paraxial approximation

[18, 19],

Vn(r, v, z) =
Aq(0)

q(z)
in exp 3i1k ±

b2

2k2 z4 exp 1 ik(r2 + b2z2/k2)

2q(z) 2
´ Jn1±ibL

q(z)
r2 exp (inv)

=
Aq(0)

q(z)
exp 3i1k ±

b2

2k2 z4 exp 1 ik(r2 + b2z2/k2)

2q(z) 2 In1 bL

q(z)
r2 exp (inv),

(6)

where the parameters L and q(z), well known from Gaussian beam theory [1],

have the following expressions:

L =
kw2

0

2
, q(z) = z ± iL. (7)

Equation (6) has a meaningful resemblance with equation (4), that represents

a generalized BGB on the plane z = 0; the argument of the Bessel function in both

equations is complex, with non-vanishing real and imaginary parts; the exponentials

in r2 have the same real part but in equation (6) there is also an additional imaginary

exponent accounting for a diŒerent phase distribution. In fact, the generalized BGB

can be obtained from the ordinary BGB by shifting the waist plane of the

component Gaussian beams along their propagation directions, from the plane

z = 0, where their waists overlap, to a suitable plane z ¹ 0, where their waists are

centred on a circumference.

The essential diŒerence among the mathematical description of the three

kinds of BGB is in the argument of the Bessel function, which is real, imaginary

or complex respectively. A compact notation for BGB on the plane z = 0,

formally identical with the ordinary beam of equation (1) but comprising all kinds
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of beams, is

Vn(r, v, 0) = Bin exp 1±
r2

w2
02 Jn(cr) exp (inv), (8)

where

B = A exp 1±
a2

w2
02 , c = b ± i

2a

w2
0

. (9)

Using this unifying notation, it becomes more evident that the ordinary, modi®ed

and generalized BGBs constitute a family. The quality of its members depend on

whether the parameter c is real (ordinary BGB), imaginary (modi®ed BGB) or

fully complex (generalized BGB). Clearly, in the last case, the real part of c accounts

for the inclination of the constituting Gaussian beams and the imaginary part for

the ` separation ’ of their waists (more precisely, for the radius of the circumference

on which they lie).

3. Imaging of generalized Bessel-Gauss beams

To set up our analysis, we refer to the geometry in the ®gure. The plane z = 0

is the ®rst plane of the ®gure. A thin lens of focal length f lies on the second plane

set at a distance z1. Finally, the third plane, at a distance z2 from the lens, is the

exit plane where the propagated ®eld will be calculated.

We denote by the subscripts 0, 1, 2 the ®elds U0(r, v), U1(s, y) and U2(r, j)

respectively on the three planes in the ®gure, successively reached in propagation

from the left.

Under the paraxial approximation, the ®eld U1(s, y) impinging on the lens is

given by a Fresnel diŒraction integral acting on the ®eld U0(r, v), on the waist

plane. As the dependence on the anomaly v is only in the linear phase term exp (inv)

the diŒraction integral is simpli®ed [27]:

U1(s, y) = (±i)n+ 1 exp (iny)
k exp (ikz1)

z1

exp 1 i
ks2

2z12
`

#
`

0

U0(r, v) exp (±inv)

´ exp 1 i
kr2

2z12 Jn 1ksr

z1 2 r dr. (10)

Figure Geometry and notations for the propagation problem.
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The ®eld U1(s, y) impinging on the lens, multiplied by the lens transmission

function [28], gives the ®eld U Â1(s, y) leaving the lens:

UÂ1(s, y) = U1(s, y) exp 1±i
ks2

2f 2 . (11)

Finally, the ®eld on the exit plane is given by another Fresnel diŒraction integral

U2(r, j) = (±i)n+ 1 exp(inj)
k exp (ikz2)

z2

exp 1 i
kr2

2z22
`

#
`

0

U Â1(s, y) exp (±iny)

´ exp 1 i
ks2

2z22 Jn1krs

z2 2 s ds. (12)

We shall use the equation (8) for the ®eld U0(r, v). Performing the integrals in

equations (10) and (12) we obtain the ®eld at a distance z2 beyond the lens

originated by a BGB with the waist at a distance z1 before the lens. The

corresponding computation, which is quite long, is reported in the appendix. The

result is

U2(r, j) = ±B(±i)n exp (inj)
cÂ

c
exp [ik(z1 + z2)]

´ exp 3 iL

w2
0z2 11 + i

cÂ

c
(z1 ± iL)

L 2 r24 exp 1 iw2
0ccÂ

z2(1 + Îz1)

4L 2 Jn [cÂr] ,

(13)

where

cÂ =
icL

zz[1 + Î(z1 ± iL)]
, Î =

1

z2

±
1

f
. (14)

Although the general result looks cumbersome to dwell with, it may be seen that,

at a generic plane z = constant, the ®eld has the mathematical structure of a

generalized BGB whose beam parameters depend on z1, z2 and f. The ®eld

structure becomes simpler in the following illustrative cases.

(a) Propagation from the ®rst focal plane to the second plane. In this case, it is

z1 = z2 = f, Î = 0, cÂ =
icL

f
, (15)

and a Fourier transform relation links the ®elds on the two planes [28].

Equation (13) becomes

V2(r, j) = B(±i)n+ 1 exp (inj)
L

f
exp (2ik f ) exp 1±

L2

w2
0 f 2

r22
´ exp 1±

w2
0c2

4 2 Jn 1 icL

f
r2 . (16)

This is clearly a generalized BGB in which the roles of the real and

imaginary parts of c are inverted. It means, for instance, that an ordinary

BGB distribution at the waist on the ®rst focal plane becomes a modi®ed

BGB at the waist in the second focal plane and vice versa. In this particular
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case, it is c = b and the parameters wÅ
0 and aÅ of the modi®ed BGB (see

equation (3)), are easily seen to be

wÅ0 = w0

f

L
, aÅ= w2

0

b f

2L
= wÅ2

0

bL

2 f
. (17)

In other words, the transformation may be interpreted a!rming that

all the component Gaussian beams, lying on a cone before the lens, lie on

a cylinder of radius aÅ after the lens and have spot size wÅ0 on their waists.

Clearly, owing to the symmetry of the Fourier transform (or to the

invertibility of the path direction), the reverse is also true; a modi®ed BGB

with the waist lying on the ®rst focal plane is transformed by the lens in

an ordinary BGB with the waist on the second focal plane. We could also

have obtained this result using the properties of the Fourier transform [29],

for the transform of a product of two functions (a Gaussian function

multiplied by a Bessel function) is the convolution of the two transforms

(the convolution of a Gaussian function with an annulus).

(b) Case z1 = 0. Performing the limit of the function in equation (13) for

z1 ® 0, we obtain

U2(r, j) = B(±i)n+ 1 exp (inj)

L exp (ikz2) exp 3 iL

w2
0z2 11 +

iL

z2(1 ± iLÎ)2 r24
z2(1 ± iLÎ)

´ exp 1±
w2

0c2

4(1 ± iLÎ)2 Jn 1 icLr

z2(1 ± iLÎ)2 . (18)

In particular, the ®eld on the second focal plane (z2 = f and Î = 0) is

U2(r, j) = B(±i)n+ 1 exp (inj)

L exp (ik f ) exp 3 iL

w2
0 f 11 +

iL

f 2 r24
f

´ exp 1±
w2

0c2

4 2 Jn 1 icLr

f 2 . (19)

This ®eld is the same as in equation (16), except for a quadratic phase

factor, that can be exactly cancelled putting a lens, identical with the ®rst

lens, on the exit plane. Here too, we may invert the path direction and the

role of the two ®elds.

(c) Perfect imaging. When

1

z1

+
1

z2

±
1

f
= 0, 1 + Îz1 = 0, (20)

equation (13) becomes

U2(r, j) = ±B(±i)n exp (inj)
z1

z2

exp [ik(z1 + z2)]

´ exp 3 iL

w2
0z2 11 + i

z1

z2L
(z1 ± iL)2 r24 Jn1 z1cr

z2 2 . (21)
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If we introduce, as usual in geometric optics, the magni®cation

M = ±
z2

z1

, (22)

equation (21) becomes

U2(r, j) =
1

M
exp [ik (z1 + z2)] exp 3 ik

2z2 11 ±
1

M 2 r24 U03 r

M
, j4 . (23)

In this case there is perfect imaging; the beam has a radial and angular

distribution that is an exact replica of the distribution at the entrance,

magni®ed by a factor M [28]. However, because of the quadratic phase

factor, this distribution is on a spherical surface.

4. Conclusions

We have analysed the eŒect of a lens on the propagation of generalized BGB.

This simple eŒect clearly shows that all kinds of BGB are interconnected to one

another; starting from a BGB of a determined kind, a proper use of propagation

and passage through a lens allows us to obtain BGBs of any other kind. Therefore

these beams are not physically shape invariant and yet have the weaker property

of transforming their physical shapes into one another. In fact these beams belong

to a class that has been shown, from a very general point of view, to maintain the

same abstract mathematical structure [30, 31] under paraxial transformations. This

is con®rmed in the practical expressions that we have obtained. Furthermore, as

already mentioned in the introduction, the BGBs are the coherent members of the

class of beams originated by J0-correlated sources; hence, this feature helps also

to clarify why partially coherent beams from those sources do not keep the same

correlation property during propagation [23], which is diŒerent from the situation

with Gauss±Schell model beams [7±9].

Appendix

Substituting equation (8) into equation (10) we obtain

U1(s, y) = ±iB exp (iny)
k exp (ikz1)

z1

exp 1 i
ks2

2z12 #
`

0

Jn(cr)Jn1ksr

z2 2
´ exp 3± 1 1

w2
0

±
ik

2z12 r24 r dr. (A 1)

This integral can be easily solved by using the integral formula [32]

#
`

0

Jn(2gx1/2)Jn(2dx1/2) exp (±ax) dx =
1

a
In 12gd

a 2 exp 1±
g2 + d2

a 2 , (A 2)

which holds for any choice of the parameters a, g and d. This yields

U1(s, y) = ±iB exp (iny)
kw2

0

2z1(1 ± iL/z1)
exp (ikz1) exp 1±

w2
0c2

1 ± iL/z12
´ In 1 cLs

z1(1 ± iL/z1)2 exp 3± 1 L2

z2
1w2

0(1 ± iL/z1)
± i

k

2z12 s24. (A 3)
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Inserting equation (A 3) into equation (12) and taking into account equation (11),

we get

U2(r, j) = (±1)n+ 1B exp (inj)
k2w2

0 exp [ik(z1 + z2)]

2z1z2(1 ± iL/z1)
exp 1±

w2
0c2

1 ± iL/z12
´ exp 1 i

kr
2

2z22 #
`

0

Jn1 icLs
z1(1 ± iL/z1)2

´ exp 5± 3 L2

z
2
1w

2
0(1 ± iL/z1)

± i
k

2 1 1

z1

+
1

z2

±
1

f 24s2 6Jn 1krs

z2 2s ds,

(A 4)

and then, using equation (A 2) again, we obtain after simple algebra

U2(r, j) = ±iB exp (inj)
L exp [ik(z1 + z2)]

z2[1 + Î(z1 ± iL)]
exp 1±

w2
0c2(1 + Îz1)

4[1 + Î(z1 ± iL)]2
´ exp 3i

kr2

2z2
2 11 ±

z1 ± iL

z2[1 + Î(z1 ± iL)]24 In1 cLr

z2[1 + Î(z1 ± iL)]2 (A 5)

This expression is equivalent to equation (13) of section 2.
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