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Abstract. The universal gadget recently proposed by Simon
and Mukunda to synthesize any non-absorbing optical
element acting on the polarization of a wave is explained by
elementary means. This different approach also leads to
alternative synthesis procedures.

Résuḿe. Le gadget universel, proposé ŕecemment par Simon
et Mukunda pour synth́etiser chaquéelément optique
pas-absorbent qui agit sur la polarisation d’une onde, est
expliqúe par des moyenśelémentaires. Cette différente
approche conduit aussià des proćed́es alternatifs de synthèse.

1. Introduction

Simon and Mukunda discussed some years ago the
following problem: can an arbitrary non-absorbing
optical element, acting on the polarization of a wave,
be synthesized using only quarter wave and half wave
plates (QWPs and HWPs, respectively)? They were
able to prove (Simon and Mukunda 1989) that such a
synthesis is possible if two QWPs and two HWPs are
used. Later, they refined their result showing (Simon
and Mukunda 1990) that the synthesis process could
be made by using two QWPs and only one HWP.
Simon and Mukunda reached such conclusions using the
powerful and elegant tools of group theory. For readers
that are not familiar with this theory the full appreciation
of Simon and Mukunda’s works can be difficult. In
this paper we intend to show how the Simon–Mukunda
gadget can be explained in an elementary way. We
shall see that the most important feature of the gadget
can be physically understood taking into account the
effect of the rotation of a HWP on circularly polarized
radiation. This not only clarifies the gadget physical
basis, but also allows us to connect the phenomena
under consideration to other interesting effects, in which
rotating anisotropic elements produce frequency shifts
(Crane 1969, Sommargren 1975, Hu 1983, Baginiet
al 1994, Pippard 1994). The mathematical tools of
our analysis are Jones matrices (Jones 1941), whose
basic properties are briefly recalled in the following
section. As an additional bonus, our results suggest the

implementation of alternative gadgets using QWPs and
rotators.

2. Preliminaries

We recall here a few basic concepts about Jones
vectors and matrices. A deeper discussion can be
found in Swindell (1975) and Hecht (1987), while
a generalization to partially coherent light can be
seen in Mandel and Wolf (1995). We shall refer to
coherent monochromatic radiation, omitting a temporal
factor exp(−iωt), where ω is the angular frequency.
The wavefront is supposed to be plane, at least
approximately. The general polarization state can be
specified by means of a column vector, sayv, of the
form

v =
(

ax exp(iδx)
ay exp(iδy)

)
, (1)

where the two column elements are projections on the
x- and y-axes of a given reference frame of a vector
representing the electromagnetic wave, e.g. the electric
field. The positive quantitiesax , ay are the amplitudes,
while the real quantitiesδx , δy are initial phases at the
considered point. As is known, the polarization state is
not affected by the multiplication ofax , ay by a common
factor. Therefore a normalization can be made by setting
equal to one, in suitable units, the quantitya2

x+a2
y , which

is proportional to the radiation intensity. Furthermore,
polarization does not change if the same contribution to
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the phase is added toδx andδy . Accordingly, we could
always setδx equal to zero and make the corresponding
adjustment to the phase constantδy .

Linear polarization states are characterized by a phase
differenceδx −δy equal to 0 orπ . The caseδx −δy = π
deserves a comment. This is that, ifδx = 0 (arbitrarily),
then δy = −π . The x- and y-components of the
wave thus become, respectively,ax exp[i(kz − ωt)] and
ay exp[i(kz−ωt−π)]. Hecht’s comment (Hecht 1987) is
that−π has been added to the phase of thex-component
to get the phase of they-component leading thex-
component byπ .

If θ is the angle between the direction of polarization
and thex-axis, the corresponding Jones vector, indicated
by lθ , is

lθ =
( cosθ

sinθ

)
. (2)

In particular, we shall be interested in the casesθ = π/4
andθ = −π/4, in which equation (2) becomes

lπ/4 = 1√
2

( 1
1

)
, l−π/4 = 1√

2

( 1
−1

)
. (3)

Circular polarization states, which are characterized
by x- and y-components with the same amplitude and
phase differenceδx − δy = ±π/2, will be indicated by
cr andcl , depending on whether polarization is right or
left circular. The corresponding Jones vectors are

cr = 1√
2

( 1
i

)
, cl = 1√

2

( 1
−i

)
. (4)

We look now at the variation with time of the successive
positions in thexy-plane from the side wherez is
negative (Yariv and Yeh 1984). The convention to
assess the sense of rotation of the electric field vector is
not unique (Born and Wolf 1991). We could look at the
xy-plane from the side wherez is positive. The terms
righthanded and lefthanded could be interchanged.

The effect of an optical component acting on the
polarization can be described by means of a suitable
2 × 2 Jones matrix, sayA. The vectorv′, expressing
the polarization after passing through the component, is
v′ = Av, i.e. in an explicit way,(

a′
x exp(iδ′

x)
a′

y exp(iδ′
y)

)
=

(
ζ1 ζ2

ζ3 ζ4

) (
ax exp(iδx)
ay exp(iδy)

)
, (5)

where ζj (j = 1, . . . , 4) are the complex elements of
the A matrix.

We are interested in optical components that do not
change the wave intensity. In this case it is easily seen
that the following condition,

|detA| = 1, (6)

has to be satisfied, where det stands for determinant. It
is then said that theA matrix characterizes a unitary
transformation. In particular, if detA is equal to one,
the transformations are said to be special unitary. It
is not difficult to show that the corresponding matrices
take on the form

A =
(

ζ1 ζ2

−ζ ∗
2 ζ ∗

1

)
, |ζ1|2 + |ζ2|2 = 1, (7)

where the star denotes complex conjugation. It may be
worthwhile noting that the set of matrices representing
unitary transformations forms a group, usually indicated
by U (2) (Joshi 1982). Special unitary transformations
form a group too, usually denoted bySU (2). Because of
the constraint appearing in equation (7),SU (2) elements
are specified by three real parameters. This is why such
a group is said to be a three-parameter group.

There are several components that are able to change
polarization without altering the intensity. The most
important examples are, basically, wave plates and
rotators. The corresponding Jones matrices are

M0(ϕ) =
( 1 0

0 exp(iϕ)

)
,

R(α) =
( cosα − sinα

sinα cosα

)
, (8)

respectively, where the index 0 means that the wave
plate axes coincide with the coordinate ones. The effect
of M0 is to increase the phase of they-component of
an amountϕ with respect to thex-component. The
effect of R is to rotate the field vector by an angleα.
It can be easily controlled; in fact, if the field vector
is rotated by such an angle, itsx- and y-components
are obtained from the old ones through multiplication
by R(α). Here α is assumed to be positive when it
represents a counterclockwise rotation in thexy-plane
(seen from positivez). Note thatM0 can be written

M0(ϕ) = exp(iϕ/2)
( exp(−iϕ/2) 0

0 exp(iϕ/2)

)
, (9)

i.e. it is a special unitary matrix, apart from a phase
factor. R(α) is also special unitary.

An important point for the following developments is
the change in the Jones matrix of an optical component
when the component is rotated through an angleα in the
xy-plane. Its matrixA before rotation must be replaced
by A ′, where

A ′ = R(α)AR(−α). (10)

In particular, as it is physically obvious, the matrix
associated with a rotator is unchanged. In order
to prove equation (10), one can proceed as follows.
First, the x- and y-components of the incoming field
are found in a rotated reference frame whose axes
are aligned to those of the optical component. This
is obtained by multiplying thex- and y-components
in the original frame byR(−α). In fact, rotating
the frame through the angleα is formally equivalent
to rotating the vector through the angle−α while
keeping the frame unchanged. The matrixA then
describes the action of the optical component. Finally,
we simply have to go back to the original frame
by means of the matrixR(α). We shall indicate
by M(ϕ, α) the matrix of a plate characterized by a
delay ϕ rotated by an angleα. In particular,M(ϕ, 0)

coincides with M0(ϕ). Applying equation (10) to
equation (8), by simple calculations it is found that
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M(ϕ, α) = exp(iϕ/2)

×
( cosϕ

2 − i sin ϕ

2 cos 2α
−i sin ϕ

2 sin 2α
−i sin ϕ

2 sin 2α
cosϕ

2 + i sin ϕ

2 cos 2α

)
. (11)

For HWPs and QWPs,ϕ is π and π/2, respectively.
The corresponding matrices, to be denoted byH(α) and
Q(α), are

H(α) =
( cos 2α sin 2α

sin 2α − cos 2α

)
,

Q(α) = exp(iπ/4)√
2

×
( 1 − i cos 2α −i sin 2α

−i sin 2α 1 + i cos 2α

)
. (12)

In particular we have, forα=0,

H0 =
( 1 0

0 −1

)
, Q0 =

( 1 0
0 i

)
. (13)

We conclude this section by observing thatH(α) can be
written in either of the following forms,

H(α) = R(2α)H0, (14)

H(α) = H0R(−2α). (15)

3. Some effects of wave plates

In this section we show how, using Jones calculus, some
well known effects of wave plates are found, together
with the effect which is the physical basis of the gadget
we study in this paper. By use of equations (3), (4) and
(13), we obtain

Q0lπ/4 = cr, Q0l−π/4 = cl . (16)

This result means that linear polarization at an angle
π/4 (−π/4) with thex-axis is transformed into circular
right (left) polarization by a QWP whose axes are the
coordinate ones. Conversely, we easily find the result

Q0cr = lπ/4, Q0cl = l−π/4 (17)

i.e. the rule of transformation of circularly into linearly
polarized light. It is also well known that a HWP
converts right circular light into left circular light and
vice versa. This is easily checked on applyingH0 (see
equation (13)) to the vectors (4). Maybe it is less known
how the conversion takes place if the HWP is rotated.
Using equations (4) and (12), we find that

H(α)cr = exp(2iα)cl, H(α)cl = exp(−2iα)cr,

(18)

i.e. that the effect of rotation is to introduce a phase
factor. It is important to note that the phase change has
opposite sign for the two types of circular polarization.
As we shall see, this phenomenon is essential to explain
the compensator proposed by Simon and Mukunda.
It is also the basis of the frequency shifts produced
by rotating anisotropic elements (Chybaet al 1988,
Agarwal and Simon 1990, Aravind 1992, Baginiet al
1994).

4. Synthesized compensator and rotator

The compensator, or variable wave plate (Born and Wolf
1991), proposed by Simon and Mukunda (Simon and
Mukunda 1990), is made of two QWPs and one HWP.
Three different sequences of such elements are possible.
The simplest one to explain is, with obvious notations,
Q–H–Q. It is clear that, if the axes of all the plates
have the same direction, the total phase lag is 2π and
no polarization change takes place. Indeed, it is easily
checked by means of equation (13) that the product
matrix is

Q0H0Q0 =
( 1 0

0 1

)
, (19)

i.e. the identity matrix. Let us suppose now that the
HWP is rotated by an angleα and study the action of
the system on arbitrarily polarized radiation. Before
examining the matrix representation of the device, let
us try to understand its effect using the results we have
just seen. Any incoming field can be represented by
means oflπ/4 and l−π/4 in the form

v = b1lπ/4 + b2l−π/4, (20)

where b1 and b2 are suitable coefficients. It is then
sufficient to study the effect of the system onlπ/4 and
on l−π/4 light separately. When the fieldb1lπ/4 passes
through the first QWP, the fieldb1cr (see equation (16))
is produced. This gives rise tob1cl exp(2iα) for the
effect of the rotated HWP (equation (18)). Finally, the
second QWP producesb1lπ/4 exp(2iα) (equation (17)).
Therefore, lπ/4 light impinging on the system comes
out with unchanged polarization and amplitude, but
with a phase change of 2α. This is an example
of the Pancharatnam phase, that is the phase taken
by the radiation field as its polarization changes in a
cyclic way (Pancharatnam 1956, Chybaet al 1988,
Agarwal and Simon 1990, Aravind 1992). In an
analogous way,l−π/4 light retains its polarization and
amplitude, but undergoes a phase change of−2α. In
conclusion, a phase difference 4α is introduced between
the componentslπ/4 and l−π/4. Therefore the system is
equivalent to a 4α wave plate, as is better seen in a
reference frame whosex-axis is alonglπ/4. In such a
frame, the three plates appear to be rotated byπ/4. The
validity of the previous analysis can be verified by using
Jones calculus. By means of equation (12), we find

Q
(π

4

)
H

(π

4
+ α

)
Q

(π

4

)
= i

2

( 1 −i
−i 1

)
×

( − sin 2α cos 2α
cos 2α sin 2α

) ( 1 −i
−i 1

)
=

( exp(−2iα) 0
0 exp(2iα)

)
. (21)

By comparison with equation (9), we conclude that

Q
(π

4

)
H

(π

4
+ α

)
Q

(π

4

)
= exp(−2iα)M0(4α). (22)

This proves that any wave plate can be synthesized,
apart from a phase factor, by the sequence Q–H–Q.
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The plate adjustment needs only angular regulation
of the HWP. This is very useful for the practical
implementation of the device. Furthermore, the phase
delay is linear inα and only one eighth of a turn is
sufficient to make the delay vary ofπ , which is the
meaningful range of delays. It is physically obvious
that the equivalence has to remain valid if the whole
device is rotated by an angleγ . In other terms, the
equality

Q
(
γ + π

4

)
H

(
γ + π

4
+ α

)
Q

(
γ + π

4

)
= exp(−2iα)M(4α, γ ) (23)

has to hold. This is easy to prove using equation (10).
It has still to be shown that the compensator can

be synthesized by the sequences Q–Q–H and H–Q–Q
too. We shall discuss this subject later. Now we are
interested in the synthesis of a rotator using two QWPs
and also one HWP. It appears in equation (14) that such
a synthesis is possible, if we recall that two cascaded
QWPs produce a HWP, i.e.Q0Q0 = H0. Then, on
multiplying equation (14) from the right byQ0Q0, we
obtain

H(α)Q0Q0 = R(2α). (24)

Alternatively, the sequence Q–Q–H can be used,
according to the relation

Q0Q0H(α) = R(−2α), (25)

which is easily checked.

5. The general anisotropic optical component

From an optical point of view, as non-absorbing
anisotropic elements can only introduce phase differ-
ences between thex- and y-components and/or rotate
the polarization plane, one can envisage that any ele-
ment, possibly produced by cascaded devices, is equiv-
alent to a sequence of only two elements, i.e. a suitably
oriented wave plate and a rotator. Reasonable as it may
sound at the physical level, such an equivalence has
to be proved. In mathematical terms, one has to show
that theA matrix describing the system can always be
written as the product of aM matrix and aR matrix.
Neglecting possible phase factors, we shall refer to ma-
trices of the form (7). We have to show that, for any
given A, it is possible to find three real parametersϕ, ε
andλ such that

A = M(ϕ, ε)R(λ) = R(ε)M0(ϕ)R(λ − ε), (26)

or, in an equivalent way, settingχ = λ − ε,

R(−ε)A = M0(ϕ)R(χ). (27)

Equation (27), written in an explicit way, gives( cosε sinε
− sinε cosε

) (
ζ1 ζ2

−ζ ∗
2 ζ ∗

1

)
=

( exp(−iϕ/2) 0
0 exp(iϕ/2)

) ( cosχ − sinχ
sinχ cosχ

)
,

(28)

where a phase factor has been omitted inM0.
Performing the matrix products, we see that the relations

ζ1 cosε − ζ ∗
2 sinε = exp(−iϕ/2) cosχ,

−ζ1 sinε − ζ ∗
2 cosε = exp(iϕ/2) sinχ (29)

have to hold. Equations (29), solved with respect toζ1

andζ2, give

exp(−iϕ/2) cosε cosχ − exp(iϕ/2) sinε sinχ = ζ1,

exp(−iϕ/2) sinε cosχ + exp(iϕ/2) cosε sinχ = −ζ ∗
2 .

(30)

We have to prove that, for any choice ofζ1 andζ2, under
the condition|ζ1|2 + |ζ2|2 = 1, a triplet of real numbers
ϕ, ε, χ exists, solving equations (30). This can be seen
in a simple way. Setting

ζ1 = a + ib, ζ2 = c + id,

a2 + b2 + c2 + d2 = 1, (31)

equations (30) become

cos(ε + χ) cos
ϕ

2
= a, cos(ε − χ) sin

ϕ

2
= −b,

sin(ε + χ) cos
ϕ

2
= −c, sin(ε − χ) sin

ϕ

2
= −d.

(32)

These equations are easily solved with respect toϕ, ε,
χ . In fact we can set

cos
ϕ

2
=

√
a2 + c2, sin

ϕ

2
=

√
b2 + d2. (33)

These relations agree with the conditiona2 + b2 + c2 +
d2 = 1 and account for the fact that the physically
meaningful range forϕ is [0, π ]. From equations (32)
ε andχ are easily obtained.

6. The Simon–Mukunda universal gadget

We have seen in equation (26) that, apart from phase
factors, we can always set

A = M(ϕ, ε)R(λ). (34)

According to equation (23), equation (34) can be written

A = exp(iϕ/2)Q
(
ε + π

4

)
H

(
ε + π + ϕ

4

)
×Q

(
ε + π

4

)
R(λ). (35)

H and Q can be exchanged (see equation (A5) in the
appendix) obtaining

A = exp(iϕ/2)Q
(
ε + π

4

)
Q

(
ε + π

4
+ ϕ

2

)
×H

(
ε + π + ϕ

4

)
R(λ). (36)
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Furthermore, H and R can be compacted (see
equation (A10)). Accordingly, equation (36) becomes

A = exp(iϕ/2)Q
(
ε + π

4

)
Q

(
ε + π

4
+ ϕ

2

)
×H

(
ε + π + ϕ

4
− λ

2

)
. (37)

This proves the Simon and Mukunda general result:
apart from phase factors, any elementA, specified by the
parametersϕ, ε, λ, can be synthesized by two QWPs
and a HWP. The order of the elements can be easily
modified. In fact, using equation (A6), we can give
equation (37) the form

A = exp(iϕ/2)Q
(
ε + π

4

)
H

(
ε + π + ϕ

4
− λ

2

)
×Q

(
ε + π

4
− λ

)
. (38)

Finally, using equation (A6) of the appendix once again,
equation (38) can be put in the form

A = exp(iϕ/2)H
(

ε + π + ϕ

4
− λ

2

)
×Q

(
ε + π

4
+ ϕ

2
− λ

)
Q

(
ε + π

4
− λ

)
. (39)

In section 4, we have shown that a compensator, or
variable wave plate, can be synthesized by the sequence
Q–H–Q. Indeed, letting in equation (38)

λ = 0, ϕ = 4α, ε = γ, (40)

equation (23) is found again. We are now able to
answer the question posed in section 4, i.e. how can the
compensator be synthesized by the sequences Q–Q–H
and H–Q–Q. Making the substitutions of equation (40)
into equation (37), we obtain

M(4α, γ ) = exp(2iα)Q
(
γ + π

4

)
Q

(
γ + π

4
+ 2α

)
×H

(
γ + π

4
+ α

)
. (41)

The same substitutions, performed in equation (39), give

M(4α, γ ) = exp(2iα)H
(
γ + π

4
+ α

)
×Q

(
γ + π

4
+ 2α

)
Q

(
γ + π

4

)
. (42)

Taking into account equations (23), (41) and (42), we
conclude that the compensator can be synthesized by
any combination involving two QWPs and a HWP.
However, it is worthwhile noting that the sequence
given in equation (23) seems the most useful for a
practical implementation of the device, as it requires
only angular regulation of the HWP. The alternative
gadgets in equations (41) and (42) need control over two
relative angles and their realization is somehow trickier.

7. An alternative gadget using rotators

Let us consider now a different identity,

exp(iα)Q
(π

4

)
R(α) = M0(2α)Q

(π

4

)
, (43)

whose validity is easily checked by using equations (22)
and (24). As all the identities given so far, it has
been derived (with a method that differs from ours)
by Simon and Mukunda, but it has some interesting
consequences that were not employed in the original
papers. Multiplying both sides of equation (43) by
Q(−π/4) from the right or from the left, we obtain

Q
(π

4

)
R(α)Q

(
−π

4

)
= exp(−iα)M0(2α), (44)

Q
(
−π

4

)
M0(2α)Q

(π

4

)
= exp(iα)R(α). (45)

These relations show that, apart from a phase factor, a
rotator is changed into a wave plate andvice versawhen
such elements are sandwiched between two crossed
QWPs. Equation (45) has also been derived in a recent
paper (Ye 1995) where an experimental realization was
also presented. Let us now refer to equation (44).
Notice that, in order to synthesize a 2α wave plate, the
rotator must give exactly the rotationα. In other terms,
a fixed rotator can be used to synthesize only one wave
plate. The question arises of whether it is possible to
obtain a greater flexibility by rotating one (or both) of
the QWPs. It is easy to calculate that

Q
(π

4

)
R(α)Q

(
γ − π

4

)
= Q

(π

4

)
R(α + γ )Q

(
−π

4

)
R(−γ )

= exp[−i(α + γ )]M0(2α + 2γ )R(−γ ), (46)

having used equation (44). As one can see, any phase
lag can be obtained acting onγ . The price to be paid
is that the synthesized plate is preceded by a rotator (it
must be kept in mind that, in matrix multiplication, the
rightmost term represents the first element encountered
by the light). An analogous procedure is used to prove
the identity

Q
(
ε + π

4

)
R(α)Q

(
−π

4

)
= exp[−i(α − ε)]

×R(ε)M0(2α − 2ε), (47)

providing us with a synthesis process in which the
rotator R(ε) follows the plate. Equations (46) and
(47) have some practical usefulness because obviously
the effect of the rotation can be compensated by a
suitable rotation of part of the apparatus. Notice that
equations (46) and (47) also hold in the caseα = 0.
Therefore any wave plate, apart from a rotation, can be
synthesized using only two QWPs.
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8. Conclusions

The Simon–Mukunda gadget is a simple device that can
be usefully exploited in the laboratory for synthesizing
any non-absorbing anisotropic element. As we have
shown its operation can be explained through elementary
considerations. An additional result of the technique
used in the present paper is that, apart from a rotation,
any wave plate can be synthesized using only two
quarter-wave plates. We finally note that, following an
inverse procedure with respect to Simon and Mukunda,
the acquired familiarity with combination of optical
elements could be used as a didactical tool to explore
some properties of the groupSU (2), whose structure
can be represented in terms of Jones matrices.
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Appendix. Some useful identities

We discuss here some simple identities that allow us
to change the positions of HWP and QWP. We begin
with the following observation. If the Jones matrices
representing three optical elementsA, B and C verify
the relation

A = BC, (A1)

then also the matrices obtained by rotating every element
by one and the same angleγ verify an analogous
relation, i.e.

A ′ = B ′C′. (A2)

This property is physically obvious. It means that, if two
cascaded optical elements are equivalent to a third one,
the equivalence cannot depend on the reference frame.
We have already used this idea to obtain equation (23)
from equation (22). In a formal way, equation (A2) is
proved by multiplying equation (A1) byR(γ ) from the
left and byR(−γ ) from the right and inserting between
B and C the identity operatorR(−γ )R(γ ). Let us
consider now the equation

H0Q(α) = Q(−α)H0. (A3)

As it is easily checked using equations (12) and (13),
this is an identity that holds for anyα. Taking into

account equation (A2), equation (A3) is generalized in
the following way,

H(γ )Q(γ + α) = Q(γ − α)H(γ ), (A4)

or, changing the variables,

H(γ )Q(β) = Q(2γ − β)H(γ ), (A5)

Q(β)H(γ ) = H(γ )Q(2γ − β). (A6)

Another pair of identities that derives from equation (14)
is

R(α)H0 = H
(α

2

)
, (A7)

H0R(α) = H
(
−α

2

)
. (A8)

Rotating by an angleγ , as R(α) remains unchanged
under any rotation, we finally obtain

R(α)H(γ ) = H
(
γ + α

2

)
, (A9)

H(γ )R(α) = H
(
γ − α

2

)
. (A10)
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