
August 15, 1996 / Vol. 21, No. 16 / OPTICS LETTERS 1205
Shape-invariance range of a light beam
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A typical axially symmetric light beam on paraxial free propagation maintains the same transverse shape
as at the waist plane for a certain range along its axis. We discuss a general procedure for estimating this
range.  1996 Optical Society of America
Light beams of a coherent and a partially coherent
nature can exhibit a host of different features in the
course of propagation. Some of them, the well-known
Hermite–Gauss and Laguerre–Gauss (LG) modes,1

simply expand at a regular pace while changing
their curvature. Others present twisting phenomena.
Most of them have a transverse configuration that
changes in a more-or-less rapid manner from one plane
to another. To account for such varied characteristics,
several parameters can be introduced. References 2
and 3 can be consulted for a general review of recent
results.

Here we discuss another parameter that could be
profitably used to describe a relevant aspect of light-
beam propagation, namely, the interval of distances
along which, starting from the waist plane,4 the trans-
verse profile remains unchanged, to a certain ap-
proximation, apart from phase and scale factors. For
brevity, we call such an interval the shape-invariance
range (SIR). We limit ourselves to coherent axially
symmetric beams in paraxial propagation. We can ob-
serve at once that certain beams have infinite SIR’s, as
proved by the case of a single Gaussian mode of arbi-
trary order. For other cases, however, the SIR can be
virtually zero, as revealed for example by diffraction of
a plane wave by a circular hole.6 The problem is how
to evaluate the SIR of a general beam.

We first discuss the basic idea in an intuitive way
and then pass on to a more comprehensive treat-
ment. Suppose that the beam under consideration is
expanded into a series of normalized LG modes. The
field space distribution Vsr, zd is then expressible as1
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Here k is the wave number, Ln is the nth Laguerre
polynomial, cn are the ( generalized) Fourier coeff i-
cients of the series expansion, and the quantities vszd,
Rszd, and Fszd have the usual expressions1:
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where l is the wavelength and v0 is the spot size at
the waist.

For simplicity we assume that the field is normalized
in such a way that

X̀
n­0

jcnj2 ­ 1 . (3)

Because of the presence of the terms expf22inFszdg
in Eq. (1) the phase relationships among the modes
change with z. This in turn determines a change of
the overall transverse pattern. For a certain range
of values of z, however, the pattern can be nearly
identical to the one seen at z ­ 0. Suppose in fact that
only a finite number of coefficients cn are significantly
different from zero, and denote by snmax 2 nmind the
difference between the highest and the lowest indices
of such coeff icients. Then, when we move away from
the plane z ­ 0, there will be a certain range of values
of z across which the condition

2Fszd snmax 2 nmind , w (4)

is met for an arbitrary choice of w . 0. Suppose,
in particular, that w ,, 2p, and note that the left-
hand side of inequality (4) is the maximum dephasing
introduced among modes by the propagation process.
Then, for all values of z for which condition (4) is met,
the f ield profile resulting from the overall mode inter-
ference remains essentially the same as at z ­ 0, except
for a possible magnification factor. In conclusion, for
beams possessing a finite number of nonnegligible co-
efficients cn, it should be possible to estimate the SIR
through inequality (4).

The above argument is to be somewhat refined.
First, the waist spot size v0 in expansion (1) can in
principle be chosen in an arbitrary way. Suppose now
that the f ield under consideration is itself a single
LG mode with a spot size w0. As we have already
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noted, the corresponding SIR must be infinite. On
the other hand, if we use a spot size v0 fi w0, series
(1) contains infinitely many terms. Paradoxically, the
reasoning based on inequality (4) would then lead
to some finite value of SIR. Evidently, the use of
inequality (4) corresponds to a sufficient rather than
to a necessary condition. We ask whether a suitable
choice of v0 can circumvent this diff iculty. A criterion
for such a choice is the following. It is well known5

that the intensity variance of any beam obeys the law
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where we used the M2 factor. The quantities Dr0 and
Drz are the equivalent widths of the beam (square
roots of the intensity variances) at z ­ 0 and z fi

0, respectively. On comparing Eq. (5) with the f irst
relation in Eq. (2) we find that our beam and the LG
modes expand at the same rate if the spot size v0 is
chosen as follows:
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It is easily seen that this choice criterion removes
the paradox quoted above. In fact, if the beam under
scrutiny is a single LG mode of order m and spot size
w0, the corresponding intensity variance and M2 factor
are7
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On inserting from Eq. (7) into Eq. (6) we find that
v0 ­ w0. As a consequence only one term appears in
series (1), so the difference snmax 2 nmind in inequal-
ity (4) is to be taken as 0. An infinite SIR is there-
fore found as required. It should be mentioned that
the choice criterion expressed by Eq. (6) turns out to be
the same as the one leading to the concept of an embed-
ded Gaussian beam.5,8

We next note that, to give inequality (4) a more
precise basis, some measure of shape invariance must
be specified. We have seen from Eq. (1) that if it were
not for the factors expf22inFszdg within the series the
propagated f ield would simply be an enlarged version
of the field at z ­ 0 multiplied by an amplitude and a
phase factor. We then define a reference propagated
field as follows:
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where, taking Eq. (3) into account, we let
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The meaning of Eq. (8) is as follows: Vr represents the
effect of propagation when transverse expansion, wave-
front curvature, and phase factors are disregarded.
The term expf2inFszdg has been introduced to account
for the average phase acquired by the beam through
propagation. In particular, let us suppose that only
one mode, say, the mth, appears in the field expansion.
In this case we would have n ­ m, and Vrsr, zd would
then equal V sr, 0d for any z. We know that in such
a case the SIR is infinite. Hence the mean-square
difference between Vrsr, zd and V sr, 0d can be taken
as a measure of how much shape invariance is lost
on propagation along a distance z. Accordingly, we
define the shape-invariance error
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We note that, owing to condition (3), eszd represents
an error relative to the total power carried by the beam.
The SIR can now be defined as the distance z such
that, if z # z , then eszd remains less than some given
quantity, say, emax. As in many similar cases, there is
some arbitrariness in the choice of the limiting value
to be accepted for emax. In most instances a sensible
value for such a maximum will be dictated by the
accuracy with which experiments are performed. On
inserting Eqs. (1) and (8) into Eq. (10) and using the
orthonormality of LG modes, we obtain the following
expression:
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Once emax is chosen, Eq. (11) can be used for the
evaluation of the SIR.

We can obtain a useful relation by replacing each
term in Eq. (11) by an upper bound. Indeed, inasmuch
as

1 2 coss2ad ­ 2 sin2a # 2a2, (12)

the following inequality for eszd can easily be derived:
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By virtue of inequality (13) we can estimate the SIR
z by requiring that
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By using Eqs. (2) we obtain
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More precisely, Eq. (16) gives a lower bound for the
SIR because the exact expression [Eq. (11)] for eszd
has been replaced by inequality (13). Of course, the
smaller the value of emax, the better the SIR estimate
given by Eq. (16) is. As seen from Eq. (15), the con-
straint on the error eszd has led to a limitation for the
maximum dephasing among modes, as in the qualita-
tive argument used for inequality (4).

It might be observed that the use of Eq. (16) can be
cumbersome because it requires the explicit evaluation
of values of cn [see Eq. (14)]. We now show that Dn
can be computed by an alternative procedure. Let
us observe that the LG modes obey the differential
equation
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where Ĥ is the differential operator
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Equation (17) is easily derived from the Schrödinger
equation for a two-dimensional harmonic oscillator,9

with only circularly symmetric solutions considered.
Using Eqs. (1) and (17), we can easily prove that
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where the asterisk denotes the complex conjugate.
Therefore we can evaluate the value Dn that enters
inequality (13) and Eq. (15) through Eq. (19) without
actually computing the values of cn.

Let us summarize our results and add some re-
marks. For any square-integrable field distribution
across the plane z ­ 0 Eqs. (14), (15), and (19) afford
a simple method for estimating the SIR of the corre-
sponding beam. In particular, this procedure leads to
an infinite SIR for single LG modes, whereas it could
be seen to give a vanishing SIR for limiting cases such
as a hard-edge f lat distribution at z ­ 0 in which the
M2 factor is known to diverge. The procedure out-
lined could be extended for obtaining estimates of the
SIR when the starting plane does not coincide with the
waist plane.
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eds., Laser Beam Characterization (Festkörper-Laser-
Institute, Berlin, 1994).

4. A waist plane can be uniquely determined for any beam
in paraxial propagation.5

5. A. Siegman, Proc. SPIE 1224, 2 (1990).
6. Of course, near the diffracting screen the paraxial

approximation breaks down. Situations like this are
then to be considered limiting cases.

7. R. L. Phillips and L. C. Andrews, Appl. Opt. 22, 643
(1983).

8. P. A. Bélanger, Opt. Lett. 16, 196 (1991).
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