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Propagation of axially symmetric
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Flattened Gaussian beams are characterized by a waist profile that passes in a continuous way from a
nearly flat illuminated region to darkness. The steepness of the transition region is controlled by an integer
parameter N representing the order of the beam. Being expressible as a sum of N Laguerre–Gauss modes,
a flattened Gaussian beam turns out to be very simple to study as far as propagation is concerned. We
investigate the main features of the field distribution pertaining to a flattened Gaussian beam throughout the
space and present experimental results relating to the laboratory production of this type of beam.  1996
Optical Society of America
1. INTRODUCTION
In many applications of light beams, a field is required
whose amplitude on a fixed plane is as uniform as possible
within a certain area and practically vanishing outside.
Typical examples are furnished by optical processing,
beam shaping, and laser cavities.1 – 9 The strictly uni-
form case with abrupt transition to zero, i.e., the case
in which the field profile is a circ function,10 is rather
inconvenient. In fact, ringing phenomena, well known
from the study of diffraction of a plane wave by a circular
hole, are exhibited in the course of propagation. In addi-
tion, the evaluation of the propagated field cannot be per-
formed in a closed form, and one has to resort to numerical
methods.11 – 13 To reduce ringing effects it is advisable
to pass from the circ function to some smoothed profile
in which the transition from light to darkness occurs in
a continuous way. Many different field profiles exhibit
such a property, which is generally lost upon propagation.
An example is furnished by super-Gaussian profiles,14

whose use in laser cavities and other applications has
given good results.4,15 – 20 The study of the propagation
features of the beams generated by these profiles is to
be handled numerically.14 A flattened profile giving rise
to a field whose propagation is exactly known, at least
under the paraxial approximation, could be attractive
from a theoretical as well as from an applicative point
of view, since it could permit better control of the beam
characteristics.

In Ref. 21 a new class of axially symmetric coherent
beams, the so-called flattened Gaussian beams (FGB’s),
was introduced. Their amplitude distribution across the
waist plane is similar to that of a Gaussian beam whose
central region has been flattened. The extension of the
area in which the amplitude is approximately uniform is
governed by an integer parameter, say, N . Although for
small values of N the amplitude profile of a FGB is not
0740-3232/96/071385-10$10.00 
very different from that of a Gaussian beam, it tends to a
circ function for increasing values of N .

In this paper we describe the main properties of FGB’s,
concerning paraxial and far-field propagation, that make
them an attractive alternative to other types of flattened
beams. In particular, we give analytical expressions for
the on-axis intensity and the far-field distribution and an
asymptotic formula for the M2 factor for large values of N .
Furthermore, we report experimental investigations on
their propagation features. It is to be noted that FGB’s
without axial symmetry, e.g., with a waist cross section
resembling a rectangle, could be introduced.21 In the
present paper, however, we limit ourselves to the axially
symmetric case.

2. GENERAL REMARKS
To understand how the analytical expression of the am-
plitude of a FGB at its waist plane can be derived, we
start from the function

fN sjd ­ exps2j2d
NX

n­0

j2n

n!
. (1)

It is evident that for N ­ 0, fN sjd reduces to the Gauss-
ian function exps2j2d and that if N ! `, the series on the
right-hand side of Eq. (1) tends to compensate the Gauss-
ian term, and fN sjd ! 1. Curves of fN sjd for different
values of N are shown in Fig. 1. Since the transition to
very small values of fN is seen to occur for j ø

p
N ,21 by

multiplying the argument of Eq. (1) by a quantity that be-
haves like

p
N , one obtains a new function, whose support

coincides approximately with the interval [0, 1]. More
precisely, we define a FGB of order N and spot size w0

as a beam that, at its waist plane, has the following field
distribution:
1996 Optical Society of America
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Fig. 1. Function fN versus j [see Eq. (1)], for different values
of N .

Fig. 2. Function UN versus r [see Eq. (2)], for different values
of N .
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where r is the radial coordinate, A0 is a complex factor,
and w0 is a real quantity expressing the width of the
beam.

On the basis of the previous considerations, a field of
the type of Eq. (2) coincides with that of a Gaussian beam
for N ­ 0, whereas it tends to the function A0 circsryw0d
when N ! `. It should be noted that in Ref. 21 the defi-
nition is slightly different, inasmuch as there the spatial
variable r is scaled by w0y

p
N instead of w0y

p
N 1 1.

However, the present choice has the advantage that in
this way the fundamental Gaussian beam is included in
the class of Eq. (2) as the FGB of zero order. Of course,
the two definitions tend to coincide when N .. 1. The
function UN srd is shown in Fig. 2 as a function of ryw0 for
A0 ­ 1 and different values of N .

Although FGB’s form a discrete family, whereas, for
example, super-Gaussian beams furnish a continuous set,
it is seen from Eq. (2) as well as from Fig. 2 that, except
for the first few values of N , FGB’s afford a rather dense
set for most practical purposes.
An estimate of the steepness of the function in the
transition region can be obtained by evaluating the maxi-
mum absolute value of its derivative. In fact, since from
Eq. (1) we have

fN
0sjd ­ 22

j2N11

N !
exps2j2d , (3)

fN
00sjd ­ 22

j2N

N !
s2N 1 1 2 2j2dexps2j2d , (4)

we can easily derive from Eq. (2) that the required maxi-
mum is

jUN
0jmax ­ jA0j

2
p

N 1 1
w0N !

√
N 1

1
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!N11/2

3 exp
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√
N 1
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!#
. (5)

For large values of N , the quantity N ! can be approxi-
mated by the Stirling formula22 to obtain the result

jUN
0jmax .

jA0j

w0

s
2N
p

. (6)

Relations (5) and (6) give the relationship between the
order N of a FGB and its steepness, once A0 and w0 have
been fixed.

In the case of a super-Gaussian profile of the form

Vgsrd ­ A0 expf2sryw0dg g , (7)

the same analysis leads to

jVN
0jmax .

jA0j

w0e
g ; (8)

i.e., its steepness is a linear function of the index g. Ap-
proximations (6) and (8) suggest that for super-Gaussian
profiles the index g plays the same role as the square
root of the order N of a FGB.

3. PARAXIAL PROPAGATION OF
FLATTENED GAUSSIAN BEAMS
One of the most attractive advantages of using FGB’s
instead of other types of flattened beams consists in the
fact that they can be easily expressed as a finite sum
of Laguerre–Gauss beams.23 In fact, as was shown in
Ref. 21, the field in Eq. (2) can be written as

UN srd ­ A0

NX
n­0

csNd
n Ln
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,

(9)

where Ln is the nth Laguerre polynomial22 and

csNd
n ­ s21dn

NX
m­n

1
2m

√
m
n

!
. (10)

From a computational point of view, the evaluation
of the coefficients csNd

n is made easier by the recurrence
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Fig. 3. Modula of the expansion coefficients c
sNd
n for a FGB of

order N [see Eq. (10)] versus n, for different values of N .

relation

csNd
n11 ­ 2csNd

n 1
s21dn

2N

√
N 1 1
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!
, n ­ 0, . . . , N 2 1 ,

csNd
0 ­ 2 2 1y2N , (11)

and by the following symmetry property:

csNd
N2n ­ s21dN2n

≥
22

Å
csNd

n

Å ¥
, (12)

whose proofs are reported in Appendix A. In Fig. 3 the
modula of the coefficients csNd

n for some values of N are
shown. For the sake of clarity the (discrete) values of
csNd

n corresponding to each value of N have been linked by
a dotted curve. It will be noticed that the law of variation
of the csNd

n ’s resembles the profile of the corresponding field
distribution. This is reminiscent of the behavior of the
eigenvalues of the prolate spheroidal wave functions24 and
of the underlying Szegö theorem.25

Once the csNd
n ’s have been calculated, the problem of

paraxial propagation of a FGB is solved by using the well-
known propagation formulas of Laguerre–Gauss beams.23

Therefore at a distance z from the waist plane we have
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wN szd

exphifkz 2 FN szdgj
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where k is the wave number; wN , RN , and FN are given by
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2
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FN szd ­ arctan

"
lz

pwN
2s0d

#
; (14c)

and the spot size wN s0d of the Gaussian fields involved in
expansion (9) is related to the width of the FGB through
the relation

wN s0d ­
w0p

N 1 1
. (15)

In Fig. 4, plots of the intensity of propagated FGB’s as a
function of the radial coordinate r are shown for several
values of z. In this figure A0 ­ 1, w0 ­ 1 mm, l ­
0.5 mm, and (a) N ­ 4, (b) N ­ 16, and (c) N ­ 49.
Distances from the z ­ 0 plane are measured in terms
of the Fresnel number,11 which is defined as

NF ­ w0
2ylz . (16)

It can be noted that at z fi 0 the transverse profile is
no longer flat, owing to the dephasing of the component
Laguerre–Gauss beams, and the typical structure of the
Fresnel diffraction by circular aperture appears. This
structure is more and more evident as N increases, so that
we can say that the more the beam is flattened in its waist
plane, the more its shape is distorted in propagation, as
diffraction rings appear.

As in the case of Fresnel diffraction by a circular aper-
ture, for a FGB, also, the on-axis intensity can be derived
in a closed form. In fact, taking into account Eqs. (10)
and (13), we have
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and, if we interchange the summation indexes and utilize
Newton’s binomial expansion,

UN s0; zd ­ A0
wN s0d
wN szd

exphifkz 2 FN szdgj

3

NX
m­0

1
2m

mX
n­0

√
m
n

!
3 h2 expf22iFNszdgjn

­ A0
wN s0d
wN szd

exphifkz 2 FN szdgj

3

NX
m­0

(
1 2 expf22iFN szdg

2

) m

. (18)

Finally, the sum in Eq. (18) is easily evaluated, yielding

UN s0; zd ­ A0
wN s0d
wN szd

exphifkz 2 FN szdgj

3
1 2 sinN11 FN szdexph2isN 1 1dfFN szd 2 py2gj

cos FN szdexpf2iFN szdg
.

(19)

Hence, as far as the on-axis intensity is concerned, we
can write
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(a)

(b)
Fig. 4. Continues on facing page.
IN s0; zd ­ jA0j2
wN

2s0d
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2szd
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Plots of the intensity [Eq. (20)] as a function of z are
shown in Fig. 5, for different values of N , with A0 ­ 1,
w0 ­ 1 mm, and l ­ 0.5 mm. In particular, the pres-
ence of maxima and minima can be noted, in correspon-
dence to odd and even values, respectively, of the Fresnel
number. When N increases, the number of maxima and
minima increases too, together with their sharpness, and
the curves tend to the function

I`s0; zd ­ 4jA0j2 sin2skw0
2y4zd , (21)

corresponding to the on-axis intensity for the case of a
circular aperture.11 In Fig. 5 this function is shown by
means of a dotted curve. One can obtain expression (21)
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(c)
Fig. 4. Three-dimensional plots of the intensity of propagated FGB as a function of r and NF , for (a) N ­ 4, (b) N ­ 16, and
(c) N ­ 49. The other parameters are w0 ­ 1 mm and l ­ 0.5 mm.
Fig. 5. FGB on-axis intensity as a function of z [see Eq. (20)], for
different values of N (solid curves). The dotted curve represents
the on-axis intensity associated with a circular hole of radius
w0 [see Eq. (16)]. The other parameters are w0 ­ 1 mm and
l ­ 0.5 mm.

by evaluating the limit (for N ! `) of Eq. (20), taking into
account Eqs. (14a) and (14c).

We note that the curves of the propagated intensity
of a FGB are very similar to those reported in Ref. 14
for super-Gaussian beams, where results of numerical
calculations are shown.

The propagation of a FGB through a general paraxial
system may be studied as well, by use of the ABCD matrix
formalism.23 The result has the form of Eq. (13), where
in expsikzd z is replaced by l, i.e., the optical path of a
ray lying on the axis of the system, and Eqs. (14a)–(14c)
are replaced by

wN ­ AwN s0d
q

1 1 fF sA, Bdg2 . (22a)

RN ­ AB
1 1 fF sA, Bdg22

1 1 BCh1 1 fF sA, Bdg22j
, (22b)

FN ­ arctanfF sA, Bdg , (22c)

where F sA, Bd ­ lByApwN
2s0d, A, B, C being matrix

elements of the overall system. In the evaluation of
Eqs. (22a)–(22c), for the sake of simplicity the input plane
is assumed to be the waist plane of the beam. Further-
more, the relationship AD 2 BC ­ 1, which holds for any
complex cascaded paraxial system, is used.

4. FAR-FIELD ANALYSIS AND
THE M2 FACTOR
Another useful property of a FGB is the fact that its
Fourier transform can be expressed in a closed form, and
therefore its far-field amplitude can be given in a simple
way. Let ŨN srd be the Hankel transform of zero order26

of UNsrd; i.e.,

ŨN srd ­ 2p
Z `

0
UN srdJ0s2prrdrdr

­ 2p

NX
n­0

an

n!

Z `

0
r2n11J0s2prrd

3 exps2ar2ddr , (23)

where, for the sake of brevity, we set
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Fig. 6. Two-dimensional Fourier transform of function UN srd
[see Eq. (26)] normalized to the value w0

2, for different values
of N . The dotted curve represents a two-dimensional Fourier
transform of circsryw0d [see Eq. (28)].

a ­
N 1 1
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2

, (24)

and J0 is the zero-order Bessel function of the first kind.
The integrals in the sum of Eq. (23) can be evaluated,27

giving
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and, from properties of Laguerre polynomials,27 we obtain
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where Ls1d
n is the generalized Laguerre polynomial with

indices N and 1, and use has been made of Eq. (24).
In Fig. 6, plots of ŨN srdyw0

2 for different values of N
are shown.

Finally, it is possible to show that Eq. (26) gives the
field diffracted by a circular aperture when N goes to in-
finity. In fact, since22

lim
n !`

"
1

nb
Lsbd

n

√
x
n

!#
­ x2b/2Jbs2

p
x d , (27)

then

lim
N !`

ŨN srd ­
J1s2pw0rd

r
w0 , (28)

which coincides with the two-dimensional Fourier trans-
form of circsryw0d.11 In Fig. 6 this limiting behavior is
shown by means of a dotted curve. It can be seen that
in the central zone the spectrum is well approximated by
the limiting curve even for small values of N , whereas the
difference becomes more and more evident as the radial
coordinate increases. In particular, for any finite N , the
corresponding curves decrease more rapidly than in the
limiting case. As we shall see in the following, such be-
havior accounts for the finite width of the far-field distri-
bution of a FGB.

One of the most important parameters in studying a
light beam is the so-called M2 factor,28,29 which is a qual-
ity factor indicating the diverging attitude of a beam, once
its spot size at the waist, i.e., its minimum width, has
been fixed. It can be proved that, for a fixed spot size at
the waist, the less diverging beam is a Gaussian beam of
zero order. Accordingly, M2 measures the difference in
diffractive spread between a general beam (whose M2 is
always .1) and a Gaussian one sM 2 ­ 1d.

If U srd represents the disturbance on the waist plane
of a general, circularly symmetric beam and Ũ srd is its
Hankel transform of zero order, then M2 is defined as

M2 ­ 2psrsr , (29)

where

sr
2 ­

Z `

0
jU srdj2r3drZ `

0
jU srdj2rdr

, (30)

sr
2 ­

Z `
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jŨ srdj2r3drZ `

0
jŨ srdj2rdr

. (31)

In the case of a FGB, the quantities in Eqs. (30) and
(31) can be evaluated starting from Eqs. (2) and (26). In
the following we shall use the quantities RN , sN , and TN ,
which are defined through the relations

Z `

0
jUN srdj2r3dr ­ jA0j2

w0
4

8sN 1 1d2
RN , (32)

Z `
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2

4sN 1 1d
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the identity of the two integrals in Eq. (34) being en-
sured by Parseval’s theorem.26 With these definitions,
variances (30) and (31) can be written as

sr
2 ­

w0
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2sN 1 1d
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hence

M2 ­ 2p

p
2RN SN
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The quantity SN can be given the simple form

SN ­
1

4p2

s2N 1 1d!
sN!d222N11

, (38)

if we perform some calculations that make use of results
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Fig. 7. Behavior of the M2 quality factor for a FGB as a function
of N . Dotted curve, exact values [Eq. (41)]; solid curve, approxi-
mation (45).

contained in Ref. 27; and for RN and TN , expressions in
terms of finite sums can be obtained:

RN ­
NX

n­0

NX
m­0

n 1 m 1 1
2n1m

√
n 1 m

n

!
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√
m
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In conclusion, the M2 factor of a FGB turns out to be

M2 ­
22N

N ! TN

q
s2N 1 1d! RN . (41)

Figure 7 (dotted curve) shows the M2 values calculated
with Eqs. (39)–(41). It can be seen that, starting from
the value 1 for N ­ 0, M2 increases monotonically as a
function of N , according to the fact that definition (29)
furnishes an infinite value in the case of fields exhibiting
discontinuities.30

Since Eq. (41) involves double sums (39) and (40), the
evaluation of the quality factor of a FGB is a bit tedious
for large N . Although such an evaluation is to be made
once and for all because M2 does not depend on w0, it is
worthwhile to give a rough estimate of M2 for large values
of N . In fact, in such a case UN srd can be approximated
by the function circsryw0d in the evaluation of integrals
(32) and (34). So we get

RN .
8N2

w0
4

Z w0

0
r3dr ­ 2N2, (42)

TN .
4N
w0

2

Z w0

0
rdr ­ 2N , (43)

and, from Eq. (41),

M2 .
p

s2N 1 1d!
2N11/2N!

. (44)

Finally, by using Stirling’s formula for the evaluation
of the factorials in Eq. (44), we obtain the asymptotic
expression

M2 ø sNypd1/4. (45)

The corresponding curve is drawn in Fig. 7 as a solid
curve. The agreement between exact and approximated
values is good not only for large N , as could be expected,
but even for relatively small N . For example, the rela-
tive error does not exceed 5% for N . 10.
In Ref. 14 the limiting value of M2 for a super-Gaussian
beam is shown to be

M2 ø
p

gy2 . (46)

On comparing relations (45) and (46) we note that, as
far as the divergence is concerned, a FGB of order N
behaves like a super-Gaussian beam with a parameter g

proportional to
p

N. This remark agrees with the one
made at the end of Section 2.

5. EXPERIMENT
In order to verify the practical feasibility of fields exhibit-
ing the behavior described in the previous sections, we
generated a FGB by illuminating an amplitude trans-
parency by a suitably expanded and collimated laser beam
and investigated some of its propagation features in both
the near and the far field.

The transparency was implemented by photographing
a computer monitor, where an intensity profile propor-
tional to UN srd, given by Eq. (2), was visualized. The
photographic medium consisted of a holographic plate
Agfa Holotest 8E56. Because of possible nonlinearities
in the emulsion response, some care must be used in this
process, and the obtained values of N and w0 are to be
checked a posteriori, by measuring the transmittivity pro-
file of the obtained transparency. An example is shown
in Fig. 8, where experimental values (circles) are drawn
together with the best-fitting curve (solid curve). The fit
leads to N ­ 14, w0 ­ 0.53 mm.

To investigate the propagation of a FGB, we illumi-
nated such a transparency by a suitably expanded and
spatially filtered beam produced by an Argon laser op-
erating at wavelength l ­ 514.5 nm. The near-field
propagated intensity was then measured, by means of a
linear CCD detector, on the planes z ­ 182 mm, z ­ 273
mm, and z ­ 546 mm, corresponding to Fresnel num-
bers 3, 2, and 1, respectively. The observed patterns
showed a certain lack of circular symmetry, presumably
owing to imperfections of the plate supporting the am-
plitude transparency. The measured values, represented
by circles, are shown in Fig. 9 along with the theoreti-
cal values (solid curves), which we obtained by using
Eq. (13), with the actual values as parameters. In each
case the reported experimental values refer to the diame-

Fig. 8. Experimental values (circles) of intensity profile for a
FGB on its waist plane, with N ­ 14 and w0 ­ 0.53 mm.
The solid curve indicates the theoretical curve jUN srdj2.
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(a)

b)

(c)
Fig. 9. Experimental near-field propagated intensity profile of
the FGB of Fig. 8 (circles) at (a) z ­ 182 mm, (b) z ­ 273 mm,
and (c) z ­ 546 mm. Solid curves indicate the theoretical be-
havior as predicted by Eq. (13).

ter along which the agreement between theory and experi-
ment is best. Arbitrary units are used for the vertical
axis. In Figs. 10(a), 10(b), 10(c), and 10(d), photographs
of the cross section of the FGB are shown, taken in the
planes z ­ 0, z ­ 182 mm, z ­ 273 mm, and z ­ 546 mm,
respectively.

Figure 11 shows, in arbitrary units, intensity values
along the propagation axis, both experimental (circles)
and predicted by Eq. (20) (solid curve).
Finally, Fig. 12 shows the far-field intensity profile.
Circles represent measured values, and the solid curve is
the theoretical curve derived from Eq. (26). The far-field
condition was obtained by means of a converging lens.
Since a magnification of the focal-plane image was used,
the radial coordinate is measured in arbitrary units and
does not reproduce the real beam dimension. The beam
cross section in the far field is shown in Fig. 13. Note
that in this picture the central zone has been deliberately
saturated in order to exhibit the presence of the first
diffraction ring, which is actually much less intense than
the central lobe, as can be seen in Fig. 12. The number
of practically observable diffraction rings is lower than in
the case of a circular hole, as was pointed out in Section 4.

Fig. 10. Experimental transverse distributions of the intensity
of the FGB of Fig. 8 at (a) z ­ 0, (b) z ­ 182 mm, (c) z ­ 273 mm,
and (d) 546 mm.

Fig. 11. Experimental behavior of on-axis intensity of the FGB
of Fig. 8 (circles), together with the theoretical behavior (solid
curve) as predicted by Eq. (20).
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Fig. 12. Experimental far-field intensity profile of the FGB
of Fig. 8 (circles), together with the theoretical behavior (solid
curve) as predicted by Eq. (26).

Fig. 13. Experimental transverse distribution of the far-field
intensity of the FGB of Fig. 8.

6. CONCLUSIONS
FGB’s seem to offer a convenient answer to a recurrent
question: Which mathematical model should we use to
describe a field distribution that at some waist plane is
uniphase and nearly flat within a disk and passes to zero
in a continuous and nonoscillatory way? The question of
course is to be specified by some requirement. In fact, al-
though there are an infinite number of possible formulas
representing such a type of field, a desirable feature would
be the ability of evaluating in an easy way the corre-
sponding field distribution everywhere in space upon free
propagation. From this standpoint some widely used
profiles such as the super-Gaussian are not entirely sat-
isfactory, because the corresponding propagation problem
is to be treated numerically. FGB’s, on the other hand,
reduce the propagation problem to the simple task of sum-
ming up N Laguerre–Gauss modes. We have seen in
this paper that for some quantities of interest, such as
the axial intensity and the far-field distribution, even sim-
pler results are obtained. We have also seen that FGB’s
are easily synthesized in the laboratory with the use of
pure amplitude transparencies so that no phase control
techniques are required. A final question could be as
follows: Is the waist profile of a FGB less convenient
than other profiles for modeling features of actual opti-
cal devices such as variable reflectivity mirrors with flat
top? The answer is negative. As clarified by a recent
investigation,31 the FGB profile is so similar to, for ex-
ample, a super-Gaussian profile that the two can fit the
experimental data with comparable accuracy.

7. APPENDIX A: SOME USEFUL
PROPERTIES OF csN d

n COEFFICIENTS
Let us start from Eq. (10), written for n 1 1:

csNd
n11 ­ s21dn11
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m­n11

1
2m

√
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n 1 1

!
. (A1)

Setting m 2 1 ­ k, we get
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and, using the well-known property of the binomial coef-
ficients, √
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we obtain
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Result (A4) may be written in the form
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where property (A3) has been used again. Equation (11)
follows immediately from Eq. (A5) and enables one to
evaluate all the csNd

n coefficients starting from csNd
0 , whose

value,

csNd
0 ­ 2 2

1
2N

, (A6)

is easily calculated by Eq. (10).
The evaluation of csNd

N is straightforward, too, and the
result is
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2N
, (A7)

so that Å
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Å
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Å
csNd

N

Å
­ 2 . (A8)

This result is generalized by induction; i.e., it is easy to
prove that, if Å
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then Å
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According to Eq. (11), we have
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since the term in the square brackets vanishes.
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