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Abstract. In this paper we describe a superposition model for Bessel-Gauss 
beams, in which higher orders are included. An analogous model leads to a 
different class of beams, namely the modified Bessel-Gauss beams. Then a 
generalized set of beams, containing the previous beams as particular cases, is 
introduced. The behaviour of these beams upon propagation is investigated, 
both analytically and numerically. 

1. Introduction 
Bessel-Gauss beams were introduced [ 13 to overcome the difficulties of physical 

realization of diffraction-free beams or Bessel beams [2-91, in which the disturbance 
in a transverse plane varied like a Bessel function of zero order. A Gaussian 
modulation had been added so that these fields do not carry an infinite amount of 
energy. Optical methods have been suggested [lo, 113 to generate practically a 
Bessel-Gauss beam of zero order. 

We review in section 2 how the Bessel-Gauss beam of zero order may be viewed 
as a coherent superposition of ordinary Gaussian beams having a common waist 
plane, whose axes are uniformly distributed on a cone. This was pointed out in 
[l, 103. Bessel-Gauss beams of higher order are obtained when the superimposed 
beams have amplitudes varying with the azimuthal angle. 

In section 3 we consider a different set of fields, which may be generated by 
superimposing ordinary Gaussian beams whose axes are on a cylinder. Since in 
this case the amplitude of the resulting disturbance involves the modified Bessel 
functions of the various orders, we call these fields modified Bessel-Gauss beams. 
We remark that the modified Bessel-Gauss beam of zero order has been recently 
introduced in [12]. 

In section 4 we show that all the previous cases are contained in a generalized 
set of fields, where the elementary beams constitute a frustum of cone at the waist 
plane. 

The  properties of the considered beams are studied both analytically and 
numerically. Results of computations are presented for the radial and longitudinal 
behaviour of the fields and are theoretically justified. 

In particular, the modified Bessel-Gauss beam of zero order shows, for a 
suitable choice of the superposition parameters, a central region of uniform 
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intensity in the waist plane. This property would be of use in exploiting the volume 
of an active medium in a more efficient way than with respect to an ordinary 
Gaussian beam. Moreover, this field may be used in some applications (medical 
and industrial) as an alternative to other configurations, such as flattened Gaussian 
beams [13], super-Gaussian beams [14,15], or fields obtained by beam integrators 
[16] and holographic beam formers [17]. 

2. Bessel-Gauss beams of order n 
Let us consider, in the plane z = 0 of a cylindrical reference frame Y ,  9, z, a 

field of the form 

v0(y ,  9; a) = A(a) exp - - exp [ibr cos (a - a)]. ( 3 
Equation (1) represents a Gaussian beam whose mean wave-vector has a projection 
jl on the z = 0 plane, forming the angle a with respect to the x axis (figure 1). The 
amplitude A is a function of a. When a varies, the wave-vector describes a cone 
of semiaperture cp such that sin cp = @, where k is the wavenumber. We note that 
the ellipticity of the beam section on the z = 0 plane has been neglected in equation 
(l), since we assume that f l  is sufficiently small with respect to k. In this 
approximation, wo may be considered as the beam spot size at the waist and the 
effects of ellipticity upon propagation may be neglected as well. 

First, let us suppose that the amplitude A does not depend on a. In this case, 
superimposing beams of the form (1) with respect to a, we obtain a total field 

where the integral expression of the Bessel functions of the first kind of integer 
order n [18], 

1 P 2 x  

has been employed, letting n = 0. 

Figure 1 .  Geometry for Bessel-Gauss beams. 
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If we now let A be a generic (periodic) function of the angle a, using its Fourier 
series expansion with coefficients A,,, 

+cQ 

A(a) = 1 A,, exp (in.), 
u = - x  

the superposition gives, according to equation (3)) 

(4) 

The field generated at any plane z = constant by the distribution ( 5 )  may be 
obtained by letting fields of the form (1) propagate separately. In  the paraxial 
approximation, which holds since /.? is small with respect to k, the elementary 
contribution v, is given by [19] 

2k 
WO u,(r, 9; a) = A(a) - exp i[kz - @(z)] - i - z 

4.4 

x e x p { - F ( z ) [ r i + ( ~ ~ - 2 ~ c o s ( a - 9 )  k 11 
x exp [ipr cos (a - a)]. (6) 

In equation ( 6 )  we have introduced the functions characterizing a Gaussian beam 
[19], taking into account the fact that the fields propagate at an angle rp with respect 
to the z axis: 

z L2coscp + 
Z 

ik x 
, L = - w 2  

1 
F(z )  = - - - 0. 

w2(z) 2R(z) 1 

We note that the phase factor accounting for the propagation in equation (6) 
contains a term that is quadratic in B, coming from a series expansion due to 
paraxial approximation. T h e  same result may be obtained using properties of the 
Fresnel transform [20]. 

The final result for the total field V ,  is 

[ ( 31 (9) 
+ff i  

x C A,in exp (in$) J,, p r  1 - iF(z) - . 
,1= - x  

We may call the nth term of equation (9) a Bessel-Gauss beam of order n .  Note 
that, in the limit wo --* 00, such a beam becomes the diffraction-free beam of order 
n, which has been studied [21]. We note that, as far as intensity is concerned, each 
of these beams is circularly symmetric, but of course this is not true for the 
superposition field (9). In  fact the nth term of the sum contains the phase factor 
exp (in$), giving rise to a spiral wave front, rotating upon propagation. Phase 
singularities of this kind are known as optical vortices [22, 231. An effect of the 
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phase pattern is that, if we have only the knth-order beams with n # 0, and we 
set A,, = +_A_,,, a sinusoidal modulation, that is conserved in propagation, is given 
to the field, since J-,,(u) = (- l)”J,(u). This result holds also for the modified and 
generalized Bessel-Gauss beams, which are treated in the following sections. 

It is worth noting from equation (9) that, while the argument of the Bessel 
functions at the waist is real, during the propagation it becomes complex. For the 
case A(a) = constant, the previous expressions coincide with those given in [l]. 

3. Modified Bessel-Gauss beams 
Let us now consider a superposition of Gaussian beams, having mean wave- 

vectors parallel to the longitudinal z direction, but whose centres are placed on a 
circumference of radius a around the z axis. We call y the angle that the x axis 
forms with the segment joining the centre of the generic beam to the origin (figure 
2). When y varies, the wave-vector describes a cylinder. At the waist plane, the 
elementary contribution to the total field has the form 

If we use for A(y) the general equation (4), we obtain a superposition of beams 
that we call modified Bessel-Gauss beams of order n at their waist, that is 

where the integral expression for the modified Bessel function of the first kind of 
integer order n, 

I,(u) = jozn exp (u cos i,b - in$) d$, 
2x 

has been employed. 

Figure 2. Geometry for modified Bessel-Gauss beams. 
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The  field generated at any plane z = constant by the distribution (1 1) is given, 
employing the same procedure as before, by (paraxial regime) 

where the definitions (7) have been employed, with cos cp = 1. The  result pertaining 
to the zero-order beam has already been obtained [l2] using a different approach. 

In this case too, we note from equation (13) that, while the argument of the 
modified Bessel functions at the waist is real, it becomes complex upon propagation. 
In particular, for very large z, it can be shown that it tends to the purely imaginary 
value -ikar/z, that is the far field pertaining to the n-th term in the beam (13 )  
contains a factor 

because, as can be seen from equations (3) and (12), 

In(u) = i"Jn( - iu). (15 )  

Thus a modified Bessel-Gauss beam of order n generates in the far zone an ordinary 
Bessel-Gauss beam of the same order, as those appearing in equation (5). T h e  
inverse relation holds too, as it can be shown that, for large z, the argument of the 
Bessel functions appearing in equation (9) tends to the limiting form -ikw&flr/2z, 
that is the far field of the nth term in such a beam contains a factor 

Jn( - i 2 8.) = ( - i)"I,,( 2 fir), 

where equation (1 5) has been used again. 
The  connection between ordinary and modified Bessel-Gauss beams of the 

same order, which transform into each other propagating in the far zone, may be 
easily understood, since it is well known that the far zone is simulated by a lens, 
which transforms parallel rays lying on a cylinder into converging rays lying on a 
cone, and vice versa. 

4. Generalized Bessel-Gauss beams 
Let us finally superimpose at their waist plane Gaussian beams having the 

centres on a circumference of radius a and the mean axes on a cone of semiaperture 
cp (figure 3).  Now the angle y that the x axis forms with the segment joining the 
centre of the generic beam to the origin coincides with the angle c( that the 
projection p of the wave-vector on the z = 0 plane forms with the x axis. This 
model encompasses both the situations considered in the previous sections as 
particular cases, and the same approximations will be used. 

The  expression for the elementary contribution to the field is 

exp [ipr cos ( y  - a)]. (17) 
2 + a2 - 2ar cos ( y  - 9) 

w6 
vo(r, 9; Y )  = 4 7 )  exp 
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Figure 3. Geometry for generalized Bessel-Gauss beams. 

At a distance z,  the centre of this beam will be radially shifted by an amount 
/3z/k. Apart from this, the shape of the field is of the form (6),  that is 

2k 
WO 

VJY, 8)  = A(y) - exp exp [ipr cos ( y  - a)] 
w(z)  

x exp {-F(z)[? + ( a  + $y - 2 ~ ( a  + $) cos ( y  - 8 ) ] } ,  (18) 

where the definitions (7) have been employed. 
If A(y) = constant, the superposition of the various contributions gives 

If we now use for A(?) an expansion of the form (4), we have 

2k 
“0 

42) 
V,(Y, 8)  = 2x - exp 

x 2 A, exp (in$) 1,[F(z)2l(a + F) + is.]. 
n = - m  

If we let a = 0 in equation (20) ,  we obtain the expression (9), exploiting equation 
(15). Instead, if we let 6 = 0, equation (13) is given. 

Note that in this general case the argument of the modified Bessel functions is 
always complex, even at the waist plane. 

Moreover, comparing a generalized Bessel-Gauss beam with a propagated 
ordinary Bessel-Gauss beam, it turns out that the two fields are always physically 
different from each other, owing to the effect of the curvature in the latter. The 
situation is depicted in figure 4, where it is suggested that the same disturbance 
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Figure 4. Equivalence between a generalized Bessel-Gauss beam and a superposition of 
Gaussian beams with same centre, axes placed on a cone, and suitable curvature. 

of equation (20) can be obtained by superimposing Gaussian beams as in section 
2 with suitable curvature radius and spot size given by equation (7) with 
z = --/tan cp. 

5. Numerical results and discussion 
As pointed out in the introduction, the modified Bessel-Gauss beam of zero 

order may show a central region of uniform intensity in the waist plane. More 
precisely, this happens when the spot size wo of the elementary beam equals the 
radius a of the cylinder. This can be easily explained considering the intensity f 
pertaining to the term of zero order in equation (1 1). Apart from a constant factor, 
we have 

In the neighbourhood of the origin we can assume that Y << wo, a.  So we can 
make the following approximation, employing Taylor expansions for both factors 
in equation (21) [18]: 

From this expression it is clear that, if the radius a equals wo, the intensity 
near the axis is constant. Instead, taking the derivative of equation (22) with respect 
to r ,  we see that, if wo is greater (less) than a, the intensity in the origin has a 
maximum (minimum). This can be easily understood by considering that on 
increasing a the maxima of the constituent Gaussian beams recede from one 
another, so that a central dip appears. 

These observations are confirmed by the numerical results presented in figure 
5 ,  where the three previous cases are shown. Here and in the following, the intensity 
is measured in arbitrary units. 
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Figure 5. Intensity distribution of the modified beam of zero order on the waist plane as 
a function of r, for wo = 1 mm, 1 = 0.6328 pm and a = 0.8 mm (------), a = 1.0 mm 
(---) and a = 1.2 mm (-). 

Since, as is well known, Gaussian beams widen upon propagation, it may be 
shown that, even if the intensity has a central dip at the waist, it has a plateau near 
r = 0 at a suitable plane z = constant, and eventually a maximum, when z is further 
increased. 

T o  this aim, let us consider the zero-order term in equation (13). The  
corresponding intensity may be written as 

Employing Taylor expansions for both factors in equation (23)) we can use for the 
intensity in the neighbourhood of the origin the expression 

where 

Defining 
.. z U 

we obtain from equation (25) the relation 

From equation (24) it is seen that the intensity shows a maximum, a plateau or a 
minimum near r = 0 depending on whether A is negative, null or positive 
respectively, that is whether C2 is greater than, equal to or less than (q2 - 1)/(q2 + 1).  
Therefore for a suitable value of z a plateau is always obtained. This behaviour is 
shown by the curves in figure 6. 
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z=6 m 

Figure 6. Intensity distribution upon propagation of the modified beam of zero order as 
a function of r ,  for wo = 1 mm, 1 = 0.6328 pm and a = 1.2 mm on the waist plane and 
on the planes z = 2 m, z = 4 m and z = 6 m. 

Still with reference to the modified beam of zero order, let us now consider 
the intensity at r = 0 as a function of the longitudinal coordinate z .  If we take the 
zero-order term in equation ( 1 3 )  and we set r = 0, the intensity turns out to be 

where we have used the definitions (26), together with 

Taking the derivative with respect to ( and indicating the derivation with a 

(30) 

Since G = -2(/(1 + c2)2, 9' tends to zero in the far zone and vanishes for c = 0 
(waist plane). I t  can also vanish when (1 - 2q2G) = 0, that is c = (2q2 - 1)'l2, which 
is real for 2q2 > 1 ,  which means that wo < 2'I2a. This value of c must correspond 
to a maximum of the intensity. Accordingly, there must be a minimum of the 
intensity in the origin. On the other hand, if wo > 2'I2a, we have only a maximum 
point at the origin. These behaviours are shown by the curves in figure 7. 

Let us now refer to the case of generalized Bessel-Gauss beams. In figure 8 
we show the intensity distribution on the z = 0 plane for the generalized beam 

prime, we obtain 
Y' = (1 - 2q2G) exp ( - 2q2G) G .  
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Figure 7. Intensity distribution of the modified beam of zero order on the axis as a 
function of z, for wo = 1 mm, 1 = 0.6328 pn and a = 0.5 mm (. . . . . .), a = 0.7 mm 
(---) and a = 0.9 mm (-). 
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Figure 8. Intensity distribution of the generalized beam of zero order on the waist plane 
rad as a function of I ,  for the values a = wo = 1 mm, 1 = 0,6328 pm, and cp = 

(. . . . . .), cp = 5 x rad (---) and cp = lo-' rad (-). 

of zero order. The parameters are such that, if j? = 0, we have the same result as 
in the dashed curve in figure 5 .  We see that, increasing the semiaperture of the cone, 
an oscillating behaviour appears and becomes more and more evident. From a 
mathematical point of view, this corresponds to the transition in the modified Bessel 
function from a purely real argument to a complex argument, whose imaginary 
part is increasing. From a physical point of view, comparing equations (10) and 
(17)) we see that in the latter an additional phase factor appears, which is different 
for the various elementary beams. Therefore the elementary contributions to the 
total field have different phase relationships for different values of Y and this causes 
oscillating behaviour. 

Finally, in figure 9 we show the intensity distribution of a generalized beam of 
zero order as a function of I ,  at various planes. We see that, for the given choice 
of the parameters, the distribution resembles that of the ordinary Bessel-Gauss 
beam [l]. As the distance increases, the transverse distribution assumes a ring 
shape, like that of the modified beam, with a minimum at the centre. 
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Figure 9. Intensity distribution upon propagation of the generalized beam of zero order 
rad at the planes as a function of Y, for a = woo = 1 mm, I = 0.6328 pm and rp = 

z = 0, z = 0.25 m, z = 0.50 m and z = 1 m. 

6. Conclusions 
Any coherent light beam may be analytically characterized by an expansion in 

orthogonal Gaussian modes. Anyway, a superposition of non-orthogonal fields may 
be physically meaningful too; a classical example is given by the expansion in 
Gaussian wave packets [24, 2-53. The behaviour of the elementary components may 
give an intuitive explanation about features of the overall field. Incidentally, we 
recall that geometrical schemes quite similar to those employed here, but involving 
incoherent superpositions, furnished intuitive models for different classes of 
partially coherent beams [26-281. 

In this paper we have presented some coherent superpositions of non- 
orthogonal Gaussian beams, giving rise to rather different amplitude profiles and 
propagation behaviours. A particular superposition generates the well known 
Bessel-Gauss beam of zero order, but the model accounts in a simple form also 
for higher-order beams. A slightly different superposition results in modified 
Bessel-Gauss beams, having an amplitude modulation given by modified Bessel 
functions. Both the previous cases are contained in a more general superposition 
scheme. 

An efficient system to produce ordinary Bessel-Gauss beams of zero order, 
making use of a holographic optical element, has been recently proposed [lo]. In  
this paper, we shall limit ourselves to give a few hints about generating in the 
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laboratory some of the fields that we studied. In  order to do this, we stress that 
the field distribution produced by a modified Bessel-Gauss beam in the z = 0 
plane, as it takes on only real and positive values, can be easily generated by means 
of pure amplitude transparencies, as photographic emulsions. T h e  same trans- 
parencies, may be used in connection with a lens to generate an ordinary 
Bessel-Gauss beam of the same order. This experimental disposition exploits the 
Fourier transform relation between the two fields, that we pointed out at the end 
of section 3. Such a relation, for the beams of zero order, has already been 
demonstrated by Sheppard [S] and Sheppard and Wilson [6 ] .  
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