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Abstract 

Numerical studies on the use of a quasi-optical grill to couple lower hybrid waves to a plasma, for current drive 
in tokamaks, are currently under way. Study of the coupling has been carried out in a rigorous way, through the 
solution of scattering from cylinders with parallel axes in the presence of a plane of discontinuity for electromagnetic 
constants. Here we restrict our attention to the case of a plasma with a step density profile and report some results 
on launched spectra, coupled power and directivity. 

1. Introduction 

When a beam of  r.f. radiation is to be injected 
into a plasma for current drive purposes at the 
lower hybrid frequency [1], one is faced with the 
problem that a propagating plane wave is com- 
pletely reflected by the plasma. The solution is 
to use a coupling mechanism via slow waves. 
This is generally accomplished by a sophisti- 
cated arrangement of  waveguides [2]. An alter- 
native approach that has been proposed not 
long ago [3] is to produce slow waves by scatter- 
ing at a grating made of, for example, conduct- 
ing cylinders. 

A rigorous analysis of  such a system is not 
easy because it entails the solution of  a heavy 
scattering problem. The main difficulty arises 
from the presence of the plane reflecting surface. 
Indeed, solutions of  the scattering problem from 

circular-section cylindrical structures in homoge- 
neous media are available [4,5]. In the presence 
of plane interfaces, solutions that hold in the 
limit of  wires [6] are known. It is not possible to 
apply this approximation to the present case, be- 
cause the radii of  the cylinders are comparable 
with the operating wavelength. 

It is possible to obtain a rigorous solution of 
the problem for an arbitrary plasma density 
profile by using the plane wave expansion of 
cylindrical functions [7]. The general features of  
the method have been presented elsewhere [8]. 

In the next section the solution in the case of  a 
constant density plasma is obtained; this ap- 
proach leads to remarkable numerical simplifica- 
tions with respect to the general formulation [8]. 
Numerical results will be given in Section 3, 
while the last section is dedicated to future devel- 
opments and conclusions. 
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2. N cylinders in front of a plane plasma surface 

Owing to the various geometrical features of 
the interacting waves and bodies, the imposition 
of the right boundary conditions is not a trivial 
task. To solve this problem it is customary to 
expand the diffracted field in terms of cylindrical 
functions, i.e. the product of a Hankel function 
H= of integer order and a sinusoidal angular 
factor (exp(inO)). 

The problem consists in calculating the co- 
efficients of the expansion of the field diffracted by 
every cylinder, in the presence of a plane surface 
with reflection coefficient F(n O, in terms of the 
cylindrical functions. Such coefficients can be de- 
termined by imposing the right electromagnetic 
boundary conditions on the conducting surfaces; 
with this aim it is convenient to express the field 
in terms of  cylindrical functions centred on the 
different cylinders• 

Since the reflection properties of a plane of 
discontinuity for electromagnetic constants are 
generally known for incident plane waves [2,4], in 
order to obtain a rigorous solution it is essential 
to use the analytic plane wave expansion of the 
above-mentioned cylindrical functions [7,8]. How- 
ever, dealing with a constant plasma density no, 
the reflection coefficient F is independent of nil 
(F -- [(1 -- no/no)/(l + no/n¢)] 1/2, with n~ the criti- 
cal density) and it is possible to use a simplified 
formulation. In this case, it can be shown that the 
field is given by the diffraction of  an incident wave 
on a structure formed by the real cylinders to- 
gether with an arrangement of  virtual cylinders 
specularly placed beyond the plasma surface, 
without taking into account the discontinuity sur- 
face (the image method). 

In this paper we consider a plane wave with 
wavevector k i as the incident field. The linear 
polarization with the magnetic vector parallel to 
the axes of the cylinders has been chosen to 
launch a lower hybrid slow wave properly. The 
notation used throughout the paper is shown in 
Fig. 1. 

The magnetic field Hto t can be expressed as the 
sum of the following fields: Hi, field of  the inci- 
dent plane wave; H~, field due to the reflection of 
Hi from the plane surface; Hd, field diffracted by 
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Fig. 1. Geometry  and notat ion used in this paper.  

the cylinders; H d r  , field due to the reflection of H~ 
from the plane surface. The Hi and Hr fields can 
be expanded in terms of Bessel functions J .  [4], 
while the diffracted field can be expressed as a 
sum of cylindrical functions with unknown co- 
efficients c=n (s = 1 . . . .  , N where N represents the 
total number of cylinders). Moreover, the use of 
the image method allows us to write 

Hdr(X=, z , )  = rHd(2h~  - x~, z A  (1) 

By imposing that the tangential component of  
the electric field on the cylindrical surfaces disap- 
pears, we find the following linear system: 

i m exp(ikil! z °) {exp(ikiix °) exp( - imq~) 

+ F exp( - i k i ± x  °) exp[im(q~ - ~)] } 

N 

+ ~ ~ ({H m_.(kd,,/')) exp[ - i ( m  - n)O~,] 
t = l  n 

+ Hm+n(kd=, ~2)) e x p [ - i ( m  + n)O~.,]}(1 - 6s.,) 
_~ " n G.(ka~)6m.=6=,,)l exp(-in~0) c~. = 0 (2) 

where a= is the radius of the sth cylinder, 6g.j is the 
Kronecker symbol, d=, ~ is the distance between 
the sth and tth real cylinder, d=, ~2~ is the distance 
between the sth real cylinder and the tth virtual 
cylinder, 

J.'(~) 
= sin-'(nll ) G=(~) -- H='(~ (3) 

The solution of such a system leads to the 
evaluation of the unknown coefficients c=. ; there- 
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fore the total magnetic field H t o  t is fully deter- 
mined. 

To calculate the power flux towards the plasma 
core, i.e. 

kZ°  ( f  n I~n l2 (1 -  lF]2)n± dnl 
- - 4 ~ - ~  i< I 

-2( laHr lm(F) ln±l dnll ) 
J - I I > l  

(4) 

we need the Fourier spectrum ~r H of the launched 
waves. The analytical evaluation of  a .  can be 
performed using the plane wave expansion of  the 
cylindrical functions [7]: 

H,(kr) e x p ( i n 0 )  I,. = h 

;/ = Fn(nl, kh) exp(iknNz )dnll (5) 

In order to optimize the coupling efficiency, the 
power of  the incident wave has to be defined. 
Since an ideal plane wave carries an infinite 
power, we consider only the power due to the 
portion of the plane wave corresponding to the 
width of  the array of cylinders along the z axis. A 
more realistic modeling will be done by means of  
an incident Gaussian beam in a forthcoming 
paper. 

3. Numerical results 

The method outlined in the previous section has 
been applied to the evaluation of the diffracted 
field, the launched spectrum, and the coupled 
power in different experimental configurations. 

As an example we consider the layout shown in 
Fig. 2, where an alignment of  N identical cylinders 
in front of  a plasma, having a density no = 2no, is 
sketched. 

The shape of the coupled power spectrum is 
reported in Fig. 3 for N = 20, ka = 0.85, kd = 2.9 
and ~o = 45 °; as can be seen, only the -- 1 and + 1 
orders carry a significant amount  of  power. 

In Figs. 4 and 5 are reported the power reflec- 
tion coefficient and the selectivity vs. the total 
number  (N) of  cylinders for different values of the 
periodicity of  the grill. The selectivity has been 
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Fig. 2. A single-layer quasi-optical grill. 
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Fig. 3. Power spectrum (N = 20; ka = 0.85; kd = 2.9: q~ = 45 ' ;  
n o = 2no; kD = 1.1) (a.u.,  arbi tuary units). 
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Fig. 4. Reflected power  (ka =0.85;  ~ = 4 5 ° ;  no =2n~: 
kD = 1.1). 

defined as the ratio of  the power coupled in the 
- 1  order to the total coupled power. 

In Fig. 6 the reflected power and selectivity of  a 
single-layer quasi-optical grill vs. the angle of  
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Fig. 5. Selectivity (ka = 0.85; ~o = 45°; n o = 2no; kD = l.l).  
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Fig. 6. Coupling parameters ( N =  5; ka =0.85;  k d = 2 . 9 ;  
no = 2no; kD = 1.1). 

incidence are shown, while in Fig. 7 the same 
parameters are plotted vs. the normalized density 
Fl 0 / n  c . 

4. Conclusions 

The numerical results of  this work are relevant 
to the optimization of  the single-layer quasi-opti- 
cal grill; the use of  rods shaped in a different way 
could give better coupling results [9]; the double- 
array configuration can be studied as a particular 
case of  that outlined in Section 2. 

The aim of  our analysis is a more realistic 
modeling, which needs the use of  incident fields 
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Fig. 7. Coupling parameters (N = 5; ka =0.85;  k d = 2 . 9 ;  
q~ =45° ;  kD = 1.1). 

different from plane waves and the presence of 
metallic side walls. For  instance, a Gaussian beam 
can be assumed as the incident wave; such a beam 
can actually be transmitted from an r.f. generator 
to the grill in the form, for example, of  an HE~j 
mode of  a corrugated waveguide. On the con- 
trary, metallic walls can be simulated by means of 
a suitable set of  wires [10], thus allowing us to use 
the method outlined in this paper. 
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