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ABSTRACT. Theoretical investigations on the use of an advanced launcher to couple lower hybrid waves to a plasma, 
for current drive in tokamaks, have been developed. A study of the coupling has been carried out in a rigorous way, through 
the solkution of the scattering by an array of cylinders with parallel axes in the presence of a plane of discontinuity for the 
electromagnetic constants. The general features of the proposed method are presented together with results on the launched 
spectra and coupled power. The numerical results of this work are relevant to the optimization of the single layer qusi-optical 
grill launching RF power towards a constant density plasma: it is shown that the power coupled in the plasma can reach 
values of about 25-30% in the - 1 diffracted order and about 40% in all other orders. As a consequence it is expected that 
the coupling values for a suitable double layer configuration should approach those for total transmission. 

1. INTRODUCTION 

When a beam of radiofrequency radiation is to be 
injected into a plasma for coupling to a slow lower hybrid 
wave [l], one is faced with the problem that a propagating 
plane wave is completely reflected by the plasma. The 
solution is to use a coupling mechanism via evanescent 
waves. 

The most popular coupling device is represented by 
waveguide grills. Since their introduction as launchers in 
toroidal plasmas [2], in the middle of the seventies, the 
waveguide phased arrays have shown a number of useful 
features, among them the absence of any structure inside 
the toroidal chamber and the very high flexibility regard- 
ing both the launched spectrum and the directivity of the 
antenna. These properties allow a large number of 
experimental configurations, from pure heating to full 
plasma current drive, to be realized. On the other hand, 
the need for the use of single mode waveguides with 
reduced section, in conjunction with a very little periodic- 
ity to properly launch slow waves, involves high values 
of dissipation. Moreover, the success of ever increasing 
big size experiments has implied the need for a very large 
number of waveguides: the next step devices require 
launchers with thousands of elements. Nevertheless, 

antennas of this kind have been used in a large number of 
successful experiments [3]. 

About ten years later, a simplified version of phased 
arrays has been proposed [4] and successfully tested [5]: 
the multijunction. In these devices a fixed phase relation 
between adjacent waveguides has been introduced, allow- 
ing the feeding of the terminal part of the antenna from 
a single oversized waveguide. As a consequence the dissi- 
pation and the RF plant complexity were reduced giving 
more experimental reliability but decreasing the spectral 
flexibility. Further simplifications in these structures 
have recently been proposed, giving rise to the concept of 
hyperguide [6] .  

A very different conceptual approach is that of quasi- 
optical grills (QOG) [7], in which the excitation of the 
plasma lower hybrid wave is produced by means of the 
scattering of an RF beam by a grating made of conducting 
rods. If such devices could produce reasonable values of 
coupling power and directivity, they would certainly 
show a drastic reduction in dissipation and RF plant 
complexity. 

In this paper we present the analysis of the diffraction 
of a propagating plane wave by N circular section rods 
arbitrarily placed close to a plasma. A rigorous analysis 
of such a system is not easy because it entails the solution 
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of a complex scattering problem. The main difficulty 
arises from the presence of the plasma reflecting surface. 
Indeed, solutions of the scattering problem from cylindri- 
cal structures in homogeneous media are available [8], In 
the presence of plane interfaces, solutions are known that 
hold in the limit of wires or perfectly reflecting surfaces 
[9]. It is not possible to apply these approximations to the 
present case, because the radii of the cylinders are com- 
parable with the operating wavelength and the plasma sur- 
face is not perfectly reflecting. 

The introduction of the plane wave expansion of cylin- 
drical functions [lo] has allowed the solution of the 
problem in a very general way, as we shall see in the next 
section. A significant reduction of the numerical com- 
plexity of the problem has been achieved in the case of a 
constant density plasma (Section 3). We remark that this 
case has been an important testing bench, also for the 
developing of waveguide grills [ l  11. Section 4 will be 
devoted to the evaluation of the coupled power, while in 
Section 5 numerical results will be presented. In the last 
section, conclusions and further developments will be 
discussed. 

2. THE GENERAL SOLUTION 

The problem under investigation is the scattering of an 
electromagnetic, linearly polarized plane wave, with 
wavevector k’, impinging on a group of perfectly con- 
ducting parallel cylinders, placed near a plane plasma sur- 
face, parallel to the cylinders (Fig. l) ,  characterized by 
the reflection coefficient r(nll). Here and in the follow- 
ing, rill stands for the ratio between the component of the 
wavevector parallel to the confinement toroidal magnetic 
field, B,, and the modulus k of the wavevector itself. The 
structure is assumed infinite in the y direction so the 
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FIG. 1.  N cylinders arbitrarily placed near a plasma surface. 
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problem can be considered a two dimensional one. The 
linear polarization with the magnetic vector parallel to the 
axes of the cylinders (H polarization) has been chosen to 
properly launch a lower hybrid slow wave [l]. 

To obtain the solution in a vacuum [8], it is customary 
to expand the diffracted field in terms of cylindrical func- 
tions, i.e. the product of a Hankel function of integer 
order H,, times a sinusoidal angular factor (exp(in9)). 
The expansion coefficients can be determined by impos- 
ing the electromagnetic boundary conditions on the con- 
ducting cylinders; to this aim it is convenient to express 
the field in terms of cylindrical functions centred on the 
various cylinders. 

In the presence of a plane interface, owing to the vari- 
ous geometrical features of the interacting waves and bod- 
ies, the imposition of the right boundary conditions is a 
quite difficult task. In particular, since the reflection 
properties of a plane of discontinuity for electromagnetic 
constants are known for incident plane waves [2, 121, in 
order to obtain the rigorous solution it is essential to use 
the analytic plane wave expansion of the above mentioned 
cylindrical functions [ 101, 

With reference to Fig. 1, we denote by subscript t the 
co-ordinates of the reference frame centred on the axis of 
the tth cylinder (t = 1, . . . , I?), while the co-ordinates of 
the axis of the same cylinder in the principal frame (x ,  z) 
will be denoted by rp(hence, SF, x: ,  zp, etc.). In order to 
impose the boundary conditions we express the magnetic 
field in terms of cylindrical waves in the reference frame 
of each of the cylinders. 

It is convenient to express the magnetic field X,,, as 
the sum of the following fields: 

XI: field of the incident plane wave; 
X,: field due to the reflection of X, from the plane 

surface; 
X,: field diffracted from the cylinders; 
X d r :  field due to the reflection of Xd from the plane 

surface. 

The fields Xd and Xdr will be given in terms of a super- 
position of assigned functions weighted with unknown 
coefficients; this allows us to take into account all the 
multiple reflections. 

By using the expression of a plane wave in terms of the 
Bessel functions of the first kind, .I,, [8], the incident 
field XI can be written as 

X,(x , z )  = Xoe Ik:x+lk;z  = Xo elkjxp+lk;zP elklx,+lk,’z, 

m = - m  

where Xo is the amplitude of the plane wave, (xt, 2,) are 
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the co-ordinates of a generic point in the reference frame 
centred on the tth cylinder, and the symbols I and I1 
stand for the orthogonal and parallel parts of a vector, 
with respect to B,, respectively. With the same proce- 
dure, the Xr field takes the form 

where use has been made of the plasma reflection coeffi- 
cient I' (the plasma surface is at x = h),  and of the propa- 
gation angle of the reflected plane wave, cp' = ?r - c p .  

The field diffracted by the 8th cylinder, under the 
action of the overall field, may be expressed as a sum of 
cylindrical functions, weighted by unknown coefficients 
csm. Therefore, we obtain the following expression for 
the diffracted field: 

s = l  m 
(3) 

where the Xo and i" terms have been made evident. 
By using Graf formula [13], the distance d,, between 

cylinders and the angle 6,, (Fig. l), it is possible to 
express the Hm functions relevant to the sth cylinder 
with s # t in terms of Bessel and Hankel functions relevant 
to the tth cylinder. Therefore, with some algebra we 
obtain: 

s = l  m , n  
s#r 

(4) 

The expression for the X d r  field is slightly more com- 
plicated, because we have to treat plane and cylindrical 
geometries together. The key for solving the problem has 
been the introduction of the Fourier spectrum of cylindri- 
cal functions in an x = h plane, with h different from 
zero. This spectrum is defined as 

The explicit expression for the above functions is [lo]: 

(Jm - nil)-" e-kh-1 
i ? r m  (- 1)" 

-a <rill < - 1 

(6) 
e i k h J I - n i  - in cos-'nl 

Fn(nll,kh) = i 7 r v c - q  
-1 <nil c 1 

(m + n l l ) n e - k h a  
i ? r m  

l < n 1 1 < o o  

By using Eqs (5) and (6) it is possible to express the 
diffracted field as a continuous superposition of plane 
waves. In the reflection from the plasma surface each of 
these waves is multiplied by a value of the I' factor 
selected by a fixed value of nil. The reflected plane 
waves, in turn, can be given in terms of J,  Bessel func- 
tions centred on the axes of the cylinders, as we have seen 
in Eq. (1). After some algebra we obtain the following 
expression: 

N 

s = l  m,n  

(7) 
where a' refers to the direction of propagation of the 
generic reflected plane wave (a' = ?r - sin-I(kl1/k)). 

By imposing the vanishing of the tangential component 
of the total electric field on the cylindrical surfaces [ 121, 

Etot(u,) = 0, Vb,, (t = 1, ..., N )  

where a, is the radius of the tth cylinder; taking advan- 
tage of the orthogonality properties of the Bessel func- 
tions, we obtain the following system: 

N 
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where 6 is the Dirac function. The plasma admittance is 
given by 

and 

where JA(t)  and HA(t) are the derivatives of the Bessel 
and Hankel functions with respect to the argument, 
respectively. 

The solution of such a system would require, in princi- 
ple, to know an infinite number of coefficients c,,,. 
Fortunately, this is not the real case, and a good approxi- 
mation to these coefficients can be done by cutting off 
the series in the previous system (8), i.e. on the assump- 
tion that the terms over a certain maximum order NT can 
be set equal to zero. A good truncation rule is NT > 3ka, 
where a is the largest radius of the cylinders [ 141. There- 
fore, the total magnetic field XI,, is fully determined. 

Then, Eqs (12)  and (13)  yield: 

Ei - E ,  = ( E ,  + &,) Yp'(kz)  s (Ei + & , ) [ ( k , )  (15) 
YO 

where 

For plasma edge conditions corresponding to a step 
size profile with constant density no, the plasma admit- 
tance assumes the value [ 1 I ]  

3 .  THE CONSTANT DENSITY PLASMA 

where nc is the critical plasma density. 
As a consequence the reflection coefficient 
(1 + 4) becomes 

= (1 - ( ) I  
Let us start with the expression for the reflection 

coefficient r. We consider an H polarized plane wave 
impinging on the vacuum-plasma interface at a certain 
angle, which may be complex. 

The reflection coefficient is defined as I - $ - ?  

I r =  E,(x = h) 
El@ = h) 

r =  1 +$-; 110 

where Ei and E ,  are the amplitudes of the incident and 
reflected plane waves, respectively. 

The expression of the total field in a vacuum, due to 
the superposition of the two aforementioned waves, is 
given by 

&,(x, z )  = &, ei(kz +k) - & rx ei(k -b) 

E,(x,z) = 0 

Equation (18) shows that r has no nll dependence. 
We may intuitively think that this case can be treated 

as an extension of the image method. This is indeed the 
case as we will show. Let us start from Eq. (7): by using 
Eq. (I) ,  it is possible to avoid the use of the J ,  Bessel 
functions; therefore, the field Xdr turns out to be given 
by 

N 

s= l  n 

Taking into account the propagation property of an 
angular spectrum of waves, i.e. 

where Yo is the vacuum characteristic admittance. 
To impose the continuity conditions on the plasma sur- 

face it is convenient to use the Fourier transform, with 
respect to z ,  of the tangential field components inside the 
plasma, i.e. G,P'(x,k,), @' l (x ,k , ) .  By imposing the 
boundary conditions, we obtain: 

6,P1(0,k:) = - 2 ~ ( & i ,  + E,,)6(k: - k,)  

%J1(O, k:)  = 2~Yo(Ei  - Er)6(k: - k,) 

(134  

(13b) 

we obtain for expression (19) :  
N 

s = l  n 
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4 .  THE COUPLED POWER 

sth real 
cylinder 

sfi virtual 
cylinder 

FIG. 2. Real cylinder and its image. 

Finally, by using Eq. (5) and the notations introduced 
in Fig. 2, we obtain 

N 

X,,(x,z) = FX0 i"cs,Hn (krv)) ein(@-+') (22) 
s=l  n 

Comparing Eqs (22) and (3), we see that the field Xdr 
is proportional to that generated by a set of cylinders 
specularly placed beyond the plasma surface (Fig. 2). 

As we said before, Eq. (22) shows that the problem 
may be solved by introducing a distribution of N virtual 
cylinders in the image half-space, i.e. the half-space 
beyond the plasma surface. The only differences from the 
ordinary image method are that the r coefficient may be 
complex and its modulus may be different from one. 

On imposing the vanishing of the tangential component 
of the electric field on the cylindrical surfaces, the follow- 
ing linear system is obtained: e {[Hn-,(MSt) ei(n-m)ayi (1 -U 
s= l  n 

x Gm(ku,) + Am,&} i"e-i"'Pcsn 

m = 0 ,  +1, +2  ,...; t =  1, ..., N (23) 

where us is the radius of the sth real cylinder, d$)  and 
82) are the distance and the angle between the 8th real 
cylinder and the tth virtual one, respectively. Here, the 
plasma surface has been assumed to coincide with the yz  
plane of the reference frame. 

Treating such a system along the lines discussed in 
Section 2,  we can estimate the total magnetic field X,,,. 

Once the solution of the diffraction problem is obtained 
with the methods set forth in the previous sections, 
i.e. the numerical values of the c,, coefficients have been 
calculated, we know the amplitudes of the waves going 
back and forth in the region between the launcher and the 
plasma (see Fig. 3) by using the expressions (3) and (7). 

To calculate the power flux towards the plasma core, 
it is convenient to express the field in this region by 
means of the Fourier superposition of the two amplitude 
spectra of waves going forward (a(kll)) and backward 
(p(kll)) [15] as follows: 

where 

and 2, = l /Yo.  The quantities p(kll) and a(kII) can be 
calculated by using Eqs (5) and (6 ) .  

By using the Poynting vector component relevant to the 
field given by expressions (24), we obtain the following 

- I 
d ' -2a 

FIG. 3. Single layer quasi-optical grill. 
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expression for the power flow, per unit y length, in the 
x direction: 

- 2 S lalZIm[I']ln,ldnIl (25) 
lnul > 1 

where Im[r] is the imaginary part of the plasma reflection 
coefficient. 

The only incident power contributing to the transmitted 
plasma waves is that relevant to the portion of the plane 
wave corresponding to the width of the array of cylinders 
along the z axis, so we take it as the incident power for 
the evaluation of the coupling efficiency. 

5. NUMERICAL RESULTS 

The method outlined in the previous sections has been 
applied to the evaluation of the diffracted field, the 
launched spectrum and the coupled power in different 
experimental configurations. 

The results shown in the following figures are relevant 
to the case of a step size profile with constant plasma den- 
sity no. The directivity is defined as the power coupled 
for negative values of rill with respect to the total coupled 
power. 

A first configuration is that shown in Fig. 3, where an 
alignment of N identical cylinders in front of a plasma is 
sketched. The shape of the coupled power spectrum is 
shown in Fig. 4 for N = 20, ka = 0.85 ,  kd = 2.9, 
kL = 0.25, cp = 45", no = 2nc: evidently, only the -1 
and + 1  orders carry a significant amount of power. 

In Figs 5 and 6 the power reflection coefficient and the 
directivity are shown versus the total number of cylinders 
( N )  for different values of the grill periodicity. 

In Fig. 7 the coupling parameters of a single layer 
quasi-optical grill versus the angle of incidence ( c p )  of the 
plane wave are shown. 

In Fig. 8 the power reflection coefficient and the direc- 
tivity versus the distance L are shown. Both parameters 
are increasing functions of the distance L. In Fig. 9 the 
same quantities are plotted versus the radius of the 
cylinders, with the distance L being kept fixed. We can 
infer that both the reflected power and the directivity 
reach optimum values in the region 0.8 < ka < 1.0. 

In Fig. 10 the same parameters are plotted versus the 
normalized density nolnc, with results similar to those of 
a waveguide grill [ 113. 

To reduce the angle of incidence corresponding to 
maximum coupling a different configuration has been 

70 l -1 diffraction order 

cd v 

FIG. 4. Coupled power spectrum relevant to the layout of Fig. 3. 

loo 1 

k I 

3 60 i4 
50 
0 5 10 15 20 25 30 

FIG. 5. Reflected power (%) versus N ;  ka = 0.85, kL = 0.25, 
rp = 45 ', no = 2n,. The different values of the periodicity, kd = 2.9, 
2.6, 2 .3 ,  correspond to central peak values of the - I  order given by 
n,,-, = -1.45, - I .  7, -2.0, respectively. 

N 

loo] 80 

- - -  k -  kd=2.3 
--a- kd=2.6 

kd=2.9 --+- 

0 1  0 1  1 1  1 I I I I I I 
0 5 10 15 20 25 30 

N 
FIG. 6. Directivity (%) versus N ;  ka = 0.85, kL = 0.25, (a = 45", 
no = 2n,. 
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FIG. 7. Reflectedpower and directivity (%) versus angle of incidence 
9; N = IO, ka = 0.85, kd = 2.9, kL = 0.25, no = 2n,. 

FIG. 10. Reflected power and directivity (%) versus normalized den- 
sity ndn,; N = 10, ka = 0.85, kd = 2.9, kL = 0.25, (a = 45", 
no = 2n,. 

100 1 

60 -1 I' 

Directivity - - - - -  

20/ 0 0 0.2 0.4 0.6 0.8 1 

kL 
FIG. 8. Rejlected power and directivity (%) versus distance kL; 
N = 10, ka = 0.85, kd = 2.9, (a = 45", no = 2n,. 
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0 0.2 0.4 0.6 0.8 1 1.2 
ka 

FIG. 9. Reflected power and directivity (%) versus radius ka; 
N = 10, kd = 2.9, kL = 0.25, (a = 45", no = 2n,. 

Reflected Power 1001 - 

5 0 1 ,  I I 1 , 1 1 1 , 1 1 , 1 , 1 1  I 3 , , , 1 , , ,  

0 10 20 30 40 
a (de&' 

FIG. 11 .  Reflectedpower and directivity (%) of an array of strip like 
'groups of cylinders; two cylinders per group, ten groups, ka = 0.85, 
kL = 0.25, kd = 2.9, p = 25", no = 2n,. 

tested. We have considered a scattering element formed 
by an alignment of two cylinders tilted at an angle CY with 
respect to the x axis. In Fig. 11 the coupling parameters 
of an array of ten of such groups (with ku = 0.85, 
kd = 2.9, kL = 0.25, i.e. the same values as are used for 
Fig. 7), as functions of the tilting angle CY, are shown for 
a fixed value of the angle of incidence of the plane wave 
cp = 25". We see that a kind of co-operative effect is 
present and acceptable values of the reflection coefficient 
can be reached even with a narrow angle of incidence. By 
choosing the plane wave incidence angle to be cp = 45 O ,  
the tilting angle 01 = Oo, and the other parameters as in 
Fig. 11, the reflected power can be lowered to about 
55%. 
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6. CONCLUSIONS 

The numerical results of this work are relevant to the 
optimization of the single layer quasi-optical grill: it has 
been shown that the coupled power can reach values of 
about 25-30% in the - 1 diffracted order and about 40% 
in all the orddrs. The use of the resonant double array 
configuration can be studied as a particular case of that 
outlined in the previous sections; work is in progress on 
the subject. 

Our analysis can be generalized by using incident fields 
different from plane waves and taking into account the 
presence of always present metallic side walls. In fact, a 
general beam can be represented by a discretized plane 
wave spectrum; so the described method is applicable. 
For example, a Gaussian beam can be assumed as the 
incident wave; such a beam can actually be transmitted 
from a radiofrequency generator to the grill, e.g. in the 
form of an HE,, mode of a corrugated waveguide. Other 
shapes of the incident beam can be obtained from an array 
of waveguides or a waveguide terminated with a suitable 
horn, too. 

On the other hand, metallic walls can be simulated by 
means of a suitable set of wires [16], thus allowing us to 
use the method outlined in this paper. The same approach 
can be used to simulate rods with non-circular cross- 
section, which could yield better coupling results [ 171. 
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