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It is shown that, in the paraxial approximation, the intensity distribution produced throughout the space by a partially coherent 
field depends only on certain projection integrals of the cross spectral density. These projections, in turn, can be recovered from 
knowledge of the spatial distribution of the optical intensity. This result can enlighten the recently evidentiated fact that two fields 
in different states of coherence can give rise to the same intensity everywhere. Some examples are discussed. 

I. Introduction 

In par t ia l ly  coherent  fields, at each tempora l  frequency, informat ion is carr ied by the space correlat ion func- 
t ion o f  the field, namely,  the cross spectral  densi ty [ 1 ]. Thanks  to the existence of  propagat ion formulas, the 
cross spectral densi ty  can be evaluated everywhere in space once it is known for any pair  of  points  across a 
certain plane, say the plane z = 0 .  This  requires the knowledge of  a four-dimensional  complex function. Un- 
fortunately,  the exper imenta l  de te rmina t ion  o f  such a huge quant i ty  of  informat ion is far from being trivial.  
On the contrary,  measur ing the optical  intensi ty even across a mul t i tude  o f  planes is a relat ively simple task. 
Wi th  this in mind,  we ask: what  in format ion  about  the cross spectral densi ty can be gained from the sole knowl- 
edge of  the optical  intensi ty throughout  the space? Could the cross spectral densi ty i tself  be retr ieved on the 
ground of  that  knowledge? 

Let us start  by the second question.  At first sight, the following argument  could be put  forward. We can hardly 
recover a four-d imensional  complex function (the cross spectral densi ty at z = 0 )  start ing from a three-di-  
mensional  real non-negat ive one (the space d is t r ibut ion  of  the optical  in tensi ty) .  Actually, a pure d imen-  
sionali ty a rgument  like this is not  necessari ly conclusive. Because of  its very nature,  the cross spectral densi ty 
cannot  be chosen at will in the form of  an arbi t rary  complex four-dimensional  function. For  example,  when 
considered as a kernel, it has to be a hermi t ian  posi t ive one [2 ]. Therefore we could even hypothize that, by 
vir tue o f  cer tain internal  constraints ,  the space correlat ion function across z = 0  is completely de te rmined  by 
the space d is t r ibut ion  o f  the optical  intensity. In addi t ion,  the d imensional i ty  argument  does not hold in the 
so called one-d imens ional  case, i.e., when the space correlat ion function at two points  depends  only on one 
transverse coordina te  for each point .  To avoid  misunders tanding,  we stress that  the cross spectral densi ty  de- 
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pends also on the z-coordinate of our reference. So what we call one-dimensional case actually corresponds to 
a two-dimensional field and the general case to a three-dimensional one. 

As a matter of fact, it was proved elsewhere [ 3 ] that the space distribution of the optical intensity fully spec- 
ifies the cross spectral density in the one-dimensional case. On the other hand, it was shown through explicit 
examples that in the general case fields in different states of coherence can produce the same intensity every- 
where. A striking example of this is offered by the so-called doughnut modes that can exhibit rather different 
coherence properties and yet are indistinguishable on a coherence basis [3,4]. Therefore a recovery of the cross 
spectral density, if any, cannot be unique. 

Then, what about the first question? Is there any coherence feature that can be unambigously recovered from 
the optical intensity? 

In this paper, we give an answer to that question. In order to synthesize our results, we need to define certain 
projections of the cross spectral density. The precise definition will be given in the next section. For the mo- 
ment, the following loose definition will suffice. Let us consider the cross spectral density at two typical points, 
say Q~ and Q2, on a plane z=const.  If in this plane we move from QI and Q2 by equal lengths along two straight 
lines orthogonal to the segment that joins Q~ and Q2, the cross spectral density will take on different values. 
The integral of these values is called the projection of the cross spectral density along the two lines. 

In the following, we shall prove that, in the paraxial approximation, the projections of the cross spectral den- 
sity along all the possible pairs of (parallel) lines across a plane z=const  uniquely determine the optical in- 
tensity everywhere. Conversely, we shall prove that such projections can be recovered from knowledge of the 
spatial distribution of the optical intensity. These results show that projections should enjoy a relevant status 
for a partially coherent field. We shall further prove that, in general, the projections do not specify completely 
the spatial coherence properties of a field, because their knowledge is insufficient for a unique recovery of the 
cross spectral density except in the one-dimensional case. To illustrate this point, we shall work out two simple 
examples where fields in different states of coherence exhibit identical projections along any pair of lines and 
therefore give rise to the same optical intensity everywhere. Beyond qualifying projections as significant co- 
herence features of a field, the above results afford an alternative procedure to assess whether two fields possess 
the same spatial distribution of intensity. In certain cases, in fact, it is easier to use the projections than the 
expression of the propagated intensity to solve such a problem. 

2. The projections of the CSD 

In this section, we define more precisely the projections of the cross spectral density (CSD from now on) 
along any pair of parallel lines. Furthermore, we show that projections at different planes are connected by a 
suitable propagation law. As we shall see, the form of this law suggests that the projections are the basic co- 
herence features in determining the optical intensity throughout the space. 

Using the radius vectors shown in fig. 1, we denote by Wz(rl, r2) the CSD across a typical plane z=const.  
The explicit dependence on the temporal frequency is omitted. At the chosen plane we consider two parallel 
lines, say ml and m2. Take an arbitrary straight line orthogonal to ml and m2 and denote by Q~ and Q2 the 
corresponding intersection points (fig. 1 ). As we said in the introduction, the projection is obtained by in- 
tegrating the values taken on by Wz when Q~ and Q2 sweep the lines m~ and m2, respectively, under parallel 
displacement. 

In order to give an explicit expression for these projections, let (x~, y~ ) and (xz, Y2) be the coordinates of 
Q~ and Q2, respectively, and let ~ be the angle between the line QIQ2 and the x-axis (see fig. 2). We introduce 
a new reference frame, say x'y',  rotated by an angle ~ with respect to xy. The new coordinates of Q~ and Q2 
are of the form (d~, y' ) and (d2, y' ), respectively, where d~ and d2 are the distances of the two lines from the 
origin. The relationships with the old coordinates are 
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Fig. 1. A generic pair of parallel lines on a plane z=const. We 
show a typical couple of points that, sweeping the two lines, give 
the values of the CSD we integrate to obtain the projection. 

/ 

Q2 

Fig. 2. The rotated frame we use to give an explicit form to the 
projection. 

x~=d~C-y'S, y~=d,S+y'C; x2=dzC-y'S, yz=dzS+y'C, (2.1)  

where C = c o s  0 and S = s i n  0. I f  we change y ' ,  the points  Q~ and Q2 move along the lines ml and m2. According 
to the previously given defini t ion,  the project ion of  the CSD along m~ and mz is given by 

Pz(d~, d2, 0 ) =  f Wz(d,C-y'S, d~S+y'C; d2C-y'S, dzS+y'C) dy', (2.2)  

where, to avoid  the in t roduct ion  o f  new symbols,  we use again the letter W~ to denote  the CSD at z = c o n s t  
even if  the arguments  are now four scalar variables instead of  two vectorial  ones. It is seen that  such a project ion 
is a function o f  three variables:  the distances o f  the selected lines from the origin and the angle between the 
line direct ion and the y-axis. The points  Q~ and Q2, which were used to introduce the concept, actually play 
no role. 

It is easy to show that  

Pz(d2, d,, 0) =Pz*(dl ,  dE, 0 ) ,  (2.3)  

because the CSD has to be hermi t ian  [2 ], and that  

Pz( -dl ,  -d2, O+ zr) =Pz( d,, dE, O), (2.4)  

because such values of  the variables would define the same pair  of  lines. 
For  our  purposes,  the most  relevant  proper ty  of  the project ions  is the way they propagate  in space. We shall 

presently show that  the projec t ion  along a pair  o f  lines at a certain angle on the plane z = c o n s t  is connected 
by a propagat ion  integral to the whole set of  project ions  at the same angle on the plane z = 0 .  We recall that,  
in the paraxial  approx ima t ion  [ 1 ], the following propagat ion  formula holds 

Ill Wz(r~,r2)= (2z) 2 Wo(p,,p2)exp{i(a/az)[(r~-p,)2-(r2-pz)21}d2p~d2p2, (2.5)  

where 2 is the wavelength corresponding to the selected tempora l  frequency and 141o is the CSD on the plane 
z = 0. It is to be noted  that  eq. (2 .5)  can be used for both  posi t ive z (direct  p ropagat ion)  and negative z ( inverse 
p ropaga t ion) .  On a typical  plane z = c o n s t  ¢ 0, let us consider  two parallel  lines with slope - c o t a n  0, whose 
distances f rom the origin are d~ and d2. The value o f  the CSD at the two points  whose coordinates  are given 
by eqs. (2 .1)  can be evaluated  by mean o f e q .  (2 .5)  as follows 
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Wz(dlC-y'S, dlS+ y' C; d2C-y'S, d2S+ y' C)= (2z) 2 WO(~'IC--q' ,S,~' ,S+q'IC;~'2C--q2S,~iS+niC) 

×exp{i (g /2z)  [ (d, - ~ ]  )2_ (d2 _ ~ [ ) 2 +  (y ,_  q] )2_ (y ,_  q[)2] } d~'l d~[ dq'~ dq[ .  (2.6) 

A change of variables has been used in the plane z=0 ,  passing from two axes, say ~ and q, parallel to x and 
y, respectively, to a new frame, ~', q', whose axes are rotated by an angle ~. On integrating both sides of eq. 
(2.6) with respect to y '  and taking into account eq. (2.2) we obtain 

l f f  pz(d , ,d2,0)=2~ exp{i(rc/2z)[(dl-~)2-(d2-~'2)2l}Po(~],~'2,0)d~id~'2. (2.7) 

This is the propagation law for the projections. It is worth noting that in the one-dimensional case the CSD's 
on the planes z=  const ¢ 0 and z =  0 are connected by a propagation formula with exactly the same structure 
as eq. (2.7). 

As a consequence of eq. (2.7), two fields possessing the same projections of the CSD along all the pairs of 
lines defined by a certain angle on the plane z=O, also have the same projections along equally oriented pairs 
on any plane z=const.  

The projections of the CSD, just like the optical intensity, are three-dimensional functions satisfying certain 
constraints (see eqs. (2.3) and (2.4)).  In addition, they propagate in the same way as a one-dimensional CSD, 
which is completely recovered by knowledge of the optical intensity [3]. Accordingly, we may guess that the 
projections and the optical intensity carry the same amount of information, and this is what we show in the 
next section. 

3. The role of the projections 

In this section, we shall establish the relationship between the spatial distribution of the optical intensity and 
the projections of  the CSD. 

Letting r,=r2=r in eq. (2.5) we obtain the optical intensity l(r, z) at the point r, z in the paraxial 
approximation: 

l f f  I(r,z)= ~ Wo(Pl,P2) exp{(27ri/2z)[(p2-p2)/2-r'(Pl-P2)]} d2pl d2p2 - (3.1) 

This is the basic link between the space intensity distribution and the CSD at z=  0. It is mainly on the con- 
sequences of this formula that we shall work in the following. We shall first inquire about the coherence features 
that can be retrieved starting from knowledge of the spatial distribution of the optical intensity. For any z ¢  0 
we introduce the new variables 

~=(pl+p2)/2, ~=(p2--pl)/2z. (3.2) 

Then, eq. (3.1) can be written 

l(r,z)= ~ exp(2~ir.T) d2r f Lo(a, ~T)exp(_2zficr.f) d2a, (3.3) 

where 

Lo(s, t) = Wo(s-t, s+ t) . (3.4) 

We denote by [(p, z) and Lo(p, t) the Fourier transforms, with respect to the first variable, of l(r, z) and 

Lo(s, t), respectively 
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t '  
/(p, z) = J I(r, z) e x p ( - 2 n i r - p )  d2r, (3.5) 

ff~o(P, t) = ~ Lo(s, t) exp( -2z t ip . s )  d2s. (3.6) 

Using eqs. (3.5) and (3.6), the following relation is easily derived from eq. (3.3) 

~ 2 z  T(p,z)=Lo(p,-~p ) . (3.7) 

It is not difficult to show that eq. (3.7) holds for z=O too. The one-dimensional version ofeq.  (3.7) was al- 
ready established elsewhere [3]. We now discuss the meaning of this equation. If  we knew/~o(P, t) for all 
possible pairs of vectors p and t then by Fourier inversion of eq. (3.6) we could recover the function Lo (s, t) 
or, which is the same, the CSD across the plane z = 0 (see eq. (3.4)).  Nevertheless, the knowledge of the optical 
intensity throughout the space, from which I(p, z) can be derived, gives only partial information about L,o. In 
fact, although the vectorial arguments of/20 in eq. (3.7) can have arbitrary lengths (thanks to the possibility 
of changing z) they are forced to be parallel to one another. We want to prove now that such a limited in- 
formation is sufficient to recover the projections of the CSD. 

We shall begin our proof by writing the Fourier inverse ofeq. (3.6). As we need to use cartesian coordinates, 
we write such an inverse as 

Lo(sx, sy; tx, ty)= I f  Lo(px, py; tx, ty) exp[2tti(pxSx +pySy) ] dpxdp~, (3.8) 

where we use the same symbols Lo and/20 both in the compact notation with two vectorial arguments and in 
the extended one with four scalar arguments. 

Now we write the projection (2.2) on the plane z=O in terms of Lo: 

Po(d,, dz, O) = f Lo(CD-Sy', SD+Cy'; CA, $3) dy', (3.9) 

where the lengths D and 3 are defined by 

D=(d. +d2)/2, 3=(dz -d l ) /2 ,  (3.10) 

and where, as in sect. 2, we used the notations: C=cos  ~, S=sin  0. 
On inserting from eq. (3.8) into eq. (3.9) we get 

Po(d,,d2, 0 ) =  I f  Lo(Px, py; CA, SA) exp[2rriD(pxC+pyS) ] d(Cpy-Spx) dpxdpy, (3.11) 

where the Fourier expansion of the Dirac d-function has been used. It is not difficult to show that, for every 
value of~,  eq. (3.11 ) is equivalent to 

Po(d,, d2, (b) = f ff.o(CP, Sp; C3, $3) exp(2~zipD) dp.  (3.12) 

Indeed, this formula shows that the projections are determined by the values that/2o takes on not at any pair 
of vectors, but only at the ones that are parallel to each other. These values are just the information one obtains 
from optical intensity, as shown by eq. (3.7). 

We now insert eq. (3.7) into eq. (3.12), letting 

z=2A/2p. (3.13) 
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Then, using the definitions of C, S, D, and A given before, we obtain a formula by which the projections are 
determined in terms of the Fourier transform of the spatial intensity distribution: 

Po(dl,d2,O)= f [[pcos~,psinO; (d2-d,)/2p] exp[izr(d~ +dr )p]  dp.  (3.14) 

It will be noted that eq. (3.14) requires the knowledge of the optical intensity throughout the space. In par- 
ticular, when p crosses the zero, the values of the intensity at z=  _+ ~ are required. Disregarding the possible 
difficulties of  obtaining such a complete information, eq. (3.14) shows how, in principle, the projections of 
the CSD along any pair of lines can be recovered starting from knowledge of the optical intensity. 

Next, we shall show that, conversely, the set of  projections of the CSD at z=  0 determines the optical intensity 
everywhere. Let us write eq. (3.3) in the more extended form 

2z 2z ~(x~y~z)=f~exp[2zd(xrx+yry~]~rxdr~ffL~(ax~ay;~rx~r~)exp[-2~i(axrx+a~r,)]~axda~. (3.15) 

Using the changes of  variables 

x=rcosO, y = r s i n O ,  rx=rcos¢~,  r y = r s i n ~ ,  (3.16) 

eq. (3.15 ) becomes 

oo 2~ ff(  ) l(rcosO, rsinO, z)= exp[2zrirtcos(O-q))] rdzd(~ Lo ax, ay;~rcos~,~rsinfb 
0 0 

×exp[  - 2zrir(ax cos O+ay sin ~) ] dax day. (3.17) 

In the last integral, we pass from the variables ax, ay to the new variables a , ,  ay, corresponding to a rotation 
of the reference axes by an angle ~. More precisely, as in eq. (2.1), we let 

ax=a'~cos~-aysin~, ay=a" sinO+ayCOS~. (3.18) 

On inserting from eq. (3.18) into eq. (3.17) and using the relation (3.9) we easily find 

oo 2/r 

I(rcosfl, rsinO, z)= ~ exp[2nirrcos(O-¢~)]  r dr d~ f exp( -2zr i ra , )do-"  
0 0 

× Lo a'cosf~-a'vsinfb, a, sinO+a'~cosO;2rcosO,~-rsmO day 

2~ 

= ~ f e x p [ 2 n i r r c o s ( O - O ) ] r d r d ~ P o ( a , -  
o o 

,Zz ) 
r, a~+  ~-z, O exp ( -2z f i r a , )  d a ' .  (3.19) 

In conclusion, eq. (3.19) proves that the complete spatial intensity distribution can be determined once the 
projections of Wo are known for all possible pairs of lines on z=0.  

Before ending this section, we add two remarks. First, we tacitly excluded in the above considerations the 
one-dimensional case. This case has been dealt with already [ 3 ]. If  we look at it as a particular case, we easily 
see that the projections of Wo are now equivalent to Wo itself. Second, we note that the previous results justify 
the following equivalence statement: "A necessary and sufficient condition for two fields to produce the same 
optical intensity everywhere is that their CSD's possess the same projections along any pair of lines at a certain 
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plane z =  const." The choice of  the plane is completely arbitrary because, as we have shown at the end of  sect. 
2, the equality o f  the projections is conserved in paraxial propagation. 

4. Examples 

The requirement that two fields have CSD's  with identical projections along any pair of  lines at z=O is a 
strong one. So strong, in fact, that one might wonder whether it implies a complete coincidence of  the two 
CSD's. In order to show that this is not the case, it may be useful to examine some examples. 

In a previous paper [3 ] it was shown that there exists a whole class of  partially coherent fields, characterized 
by different CSD's on the plane z=O, and yet producing the same optical intensity everywhere in the space. 
Such fields are o f  the form 

V(r) =c~ + )V(~+ )(r,O) + c ( -  )V~- )(r, O) , (4.1) 

where r and 0 are polar coordinates in the plane z = 0 ,  and V(~+)(r, O) and V(~-)(r, O) are given by 

V(~+ ) ( r ) = F ( r )  exp(+_inO) , (4.2) 

where F ( r )  is an arbitrary function of  the modulus of  r and n is an integer. The coefficients c ~+) and c ~-) are 
uncorrelated random variables, whose mean square values give a fixed sum, say T: 

T =  ( I c  <+) 12> + ( I c  <-) 12) = c o n s t ,  (4.3) 

where the angular brackets denote ensemble average. For each field in this class we introduce a second pa- 
rameter, namely, 

~= ( I c < + ) 1 2 ) -  ( I c ~ - ) 1 2 )  . (4.4) 

According to the coherence theory in the space-frequency domain [ 1 ], the CSD in the plane z =  0 is 

V%(rl, rz) = ( V(ri ) V*(r2) ) = F ( r j )  F*(rz) exp[i~%(Ol - 0 2 )  ] 

× { T2 cos2[ n( Ol --02)] + ¢2 sin2[ n( Ol _Oz) ] } l/2 , (4.5) 

where 

q/,(0~ - 0 2 )  = t a n  -l{ (E/T) tan [n(01 - 0 2 ) ] } .  (4.6) 

In particular, letting rl = r2 = r; 01 = 02 = 0, we find that the optical intensity is circularly symmetric and has the 
expression 

I(r, O)=TIE(r)12 . (4.7) 

On inserting eqs. (4.5) and (4.7) into the definition of  the degree o f  spectral coherence [1 ], 

/to(rl, r 2 ) =  Wo(rl, r2) /[ I (r l ,  O)I(r2, 0 ) ]  1/2 (4.8) 

we find 

/to(r,, r2) =exp{i [01 -¢~2 + qz,(01 - 02) ] }{cos2 [n(01 - 0 2 ) ]  + (C/T) 2 sin2 [r/(01 - 0 2 ) ] }  1/2, (4.9) 

where 0j is the argument o f  the function F(r j ) ,  i.e., 

¢)j=arg[F(rj)], j - - l , 2 .  (4.10) 

The meaning of  the present results can be seen from eqs. (4.7) and (4.9). The former shows that the optical 
intensity at z - - 0  does not depend on E, whereas the latter shows that/~o is a function of  t. In this way, we have 
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a one-parameter family of  fields all o f  which possess the same intensity while possessing different coherence 
properties. The parameter e can vary from - T to T. The extreme values ( I e[ = T) correspond to the two co- 
herent cases in which only one of  the two fields V~ +) and V~-) is present. The modulus of/~o is then equal 
to one. ,Any other value of  e gives a partially coherent field. 

In a previous paper [3],  we proved by explicit evaluation that all such fields produce the same intensity 
everywhere in space. Now we are going to give an alternative approach, showing that all the fields o f  this class 
lead to identical projections of  the CSD along any pair of  lines. 

Using the cartesian coordinates x =  r cos 0, y =  r sin 0 and defining the function G(r) so that 

F(r)=G(r) r", (4.11) 

we write the fields of  eq. (4.2) in the form 

V~±)(r)=G(r) (x_+iy)".  (4.12) 

Starting from the field (4.1), the CSD in the plane z = 0  can be evaluated, yielding 

Wo(rl, r2) =G(rl ) G*(rz) { ([C(+) [ 2) [XlX2 +YlY2 +i(x2yl  -XlY2) ]n 

+ < Ic (-)1=> [XIX2 "q'YlY2 --i(YzYl --xIY2) ]n} . (4.13) 

By means of  the definitions (4.3) and (4.4) and letting 

ot=xlxz+yly2, fl=x2yl--xly2, ¢ = a + i f l ,  (4.14a,b,c) 

the CSD takes the form 

Wo(rl,r2)=G(rl) G*(r2) ~,T +e , (4.15) 

because o~ and ]? are real quantities. Since (~*) n = ( ~ ) . ,  the coefficients of  T and e in eq. (4.15 ) coincide with 
the real part o f  ~ and with i times the imaginary part of  ~n, respectively. By the expansion of  ~n, 

~n= (c~+i]?)~= k=o~(k) (i]?)kc~n-k' (4.16) 

it can be seen that only even powers of]? contribute to the real part of  fin, and, conversely, only odd powers 
to the imaginary one. As we shall see in a moment ,  this fact implies that all the projections of  Wo are inde- 
pendent from e. 

Because of  the definition o f  the projection (eq. (2 .2)) ,  we have to evaluate the CSD at the points whose 
coordinates are given by eq. (2.1). By substituting those values into c~ and]? (eqs. (4.14a) and (4.14b)) ,  we 
obtain 

ot=dld2 +y '2 , ]?=(dt-d2)y' ,  (4.17a,b) 

so that ~ is an even function of  y' ,  while fl is an odd one. The functions G and G* are even too, because 

r j = ( d ~ + y ' 2 )  1/2 , j = l , 2 .  (4.18) 

Thanks to the remarks following eq. (4.16), it is easy to conclude that the coefficient of  ~ in eq. (4.15 ) is an 
odd function o f  the integration variable y'.  Hence, after integration, this coefficient vanishes. This proves that 
the projections depend on T, whereas they are insensitive to the coherence parameter e. 

It will be noted that eq. (4.2) encompasses as particular cases the well known Laguerre-Gauss beams [5].  
As a consequence, the previously discussed properties can be exhibited by rather common light fields. 

In the previous example we dealt with fields having radially symmetric intensity. It is worthwhile to give a 
different example in which this property does not hold. Let us consider an ensemble of  fields of  the form 
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V ( r ) =  [ct + )(ax + iby) +c<-)( ax - i by )  ] F(r) , (4.19) 

where V is the disturbance at the point r of the plane z =  0, c t+) and c t - )  are random uncorrelated coefficients 
and F(r) an arbitrary function of the modulus of  r, while a and b are real constants. The CSD pertaining to 
the fields (4.19) is 

I'Vo(rl, r2) = F ( r l  ) F*(r2) [T(a2xlx2 +b2ylY2) -iEab(x~y2 -x2Yl)  ] , (4.20) 

where T a n d  E are defined in eqs. (4.3) and (4.4). The corresponding optical intensity at z=0 ,  say I(r ,0) ,  is 

I(r, 0) =- Wo(r; r) = T(a2x2+b2y2)lF(r)12 . (4.21) 

Furthermore, on evaluating the degree of spectral coherence given by eq. (4.8), we find 

( a2x  i x2 q- b 2yl Y2 ) - i ( E / T)ab( Xl Y2 - x2yl ) 
/Z° (rl ; r2) = [ (a 2X12 + b  2yl)2 (a 2X22 + b  2y2)2 ]1/2 exp [i (¢1 -- 02) ] , (4.22) 

where we used the notation (4.10). 
Let us now discuss the main features of  these fields. Even in this case, once Thas  been fixed, we have a class 

of  fields depending on a single real parameter E. All these fields produce the same intensity across the plane 
z = 0  while the degree of spectral coherence depends on E. In particular, for E= + T complete coherence is ob- 
tained ( I/tol = 1 ) whereas this is not true for I EI < T. 

We maintain that all the fields of  the present class give rise to identical projections of Wo along any pair of 
lines. Inasmuch as E only appears in the second term on the right-hand side ofeq. (4.20), it is enough to show 
that such a part of Wo does not contribute to the projections. On inserting the specified term into eq. (2.2) 
and taking into account eq. (2.1), the equation to be proved is 

f [ (a, C - y ' S ) ( d 2 S + y ' C )  - (d2C-y 'S) (d l  S+y'C) ] F ( @  +y,2 ) F * ( ~  ) d y ' = 0 ,  (4.23) 

where C=cos0 ,  S=s in  0. By simple algebra, eq. (4.23) becomes 

( d l - d 2 )  ~ y ' F ( ~ )  F * ( x / ~  + y  '2 ) d y ' = 0 ,  (4.24) 

and this is obviously true because an odd function of y '  appears under the integral sign. 
Because of the equivalence statement given at the end of sect. 3, we can conclude that, for a fixed value of 

T, all the fields described by eq. (4.20) give rise to the same intensity throughout the space regardless of their 
coherence properties. This conclusion could also be tested by computing explicitly the optical intensity in space. 
However, it would be seen that, for the present example, the projection approach is simpler to use than the 
direct evaluation of the optical intensity. 

5. Conclusions 

It is a widely held opinion that the spatial features of  a light field are completely specified once its optical 
intensity is known throughout the space (at each temporal frequency). In particular, it tends to be taken for 
granted that fields in different states of  coherence cannot give rise to the same intensity everywhere in space. 
This is perhaps to be ascribed to the idea that a reduction of the spatial coherence of a field implies necessarily 
an increase of  its angular width. It was shown, however, that in certain cases [ 3 ] two fields with different co- 
herence properties can be indistinguishable as far as the space distribution of intensity is concerned. On the 
other hand, the different state of  coherence of two such fields would be revealed in most diffraction and in- 
terference experiments. 
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A quest ion that arises quite natural ly is the following. Which are the constraints  that the space dis t r ibut ion 
of  the optical  intensi ty imposes  on the cross spectral densi ty o f  the field? In other words, which coherence fea- 
tures can be uniquely retr ieved start ing from knowledge of  the optical  intensity through the space? In this paper,  
we found that  a possible answer is based on the project ions  of  the cross spectral density. These projections,  
which are suitable integrals of  the cross spectral  density, de termine  uniquely the optical intensi ty in space and 
vice versa. Fur thermore ,  we showed that,  passing from a plane z = const to another,  the project ions obey a prop- 
agation law whose d imensional i ty  is smaller  than the one per ta ining to the cross spectral density. This might 
be a key for explaining the role of  project ions  in the above problems.  Basically, the project ion opera t ion  gives 
a function with fewer degrees of  f reedom than the cross spectral densi ty and this is why project ions are con- 
nected in an invert ible way to the spatial  d is t r ibut ion  of  the optical intensity. 
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