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Cylindrical waves, i.e. the product of a Hankel function of integer order times a sinusoidal angular factor, often occur in dif- 
fraction theory. We derive the expansion of a cylindrical wave into plane waves and we give some examples of applications. 

1. Introduction 

Hankel functions are fundamental building blocks in constructing the solution of many two-dimensional dif- 
fraction problems. Let us consider the Helmholtz equation 

V2V+ k2V=O , 

where V 2 is the two-dimensional Laplace operator and k is the wavenumber of the radiation field. The function 
Vstands for a typical component of  the electric or magnetic field. In cylindrical coordinates, the basic solutions 
of the Helmholtz equation are of  the form Hn (kr )  exp (int~), where Hn is the Hankel function of integer order 
n while r and ot are a radial and an angular coordinate, respectively. For the sake of brevity, we shall refer to 
these functions as cylindrical waves of  order n (shorthand notation: CW~). We recall that there are two types 
of Hankel functions, known as Hankel functions of  the first and of the second kind. The corresponding CW~ 
represents outgoing (first kind) or ingning (second kind) fields, when a time factor e x p ( - i t o t )  is assumed. 
Although these functions are so important, their representation in the form of a plane wave expansion is not, 
to the best of  our knowledge, available in the literature, except for the case n = 0. In this paper, we shall derive 
such an expansion and we shall give some examples of  applications. 

Our study was motivated by a research about quasi-optical techniques for launching electromagnetic power 
into plasmas [ 1,2 ]. One of the proposed methods [ 2 ] relies on the coupling between the electromagnetic field 
and the plasma via evanescent waves produced by scattering at a grating. In case the grating is made up by 
conducting cylinders, the diffracted field can be expressed as a superposition of CWn. The spatial frequency 
spectrum of such a field is of interest. Although this can be obtained through numerical Fourier transform 
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techniques, the knowledge of the spectral representation of CWn gives substantial benefits. We think that such 
a knowledge can also be of help for several other diffraction problems. 

2. Plane wave expansion of the cylindrical waves 

The geometry of our problem is illustrated in fig. 1. Across a certain plane ~=~o>0, we consider a two- 
dimensional field distribution of the form 

Hn(p)exp(ina), n=O, +l, +2,..., (1) 

where, for the sake of generality, we use a dimensionless radial coordinate and Hn denotes the Hankel function 
of integer order n and of  the first kind. The latter is generally designated by the symbol H~ 1), in order to dis- 
tinguish it from the second kind function. Here ,  we drop the superscript because we do not use functions of 
both kinds at the same time. We want to express the above distribution as a superposition of plane waves. 

Out starting point is the following Sommerfeld integral representation [ 3 ] for the Hankel functions of the 
first kind 

H,,(p)= (-i)------~ f exp(ip cos w+inw) dw , (2) 
7[ 

c 

where the integral is to be evaluated in the plane of the complex variable 

w=u+iv, (3) 

and the integration path C can be shaped as in fig. 2. The precise form of C can be chosen with some arbi- 
trariness. The basic requirements are as follows: (i) C passes through the origin; (ii) the upper path (v> 0) 
belongs to the vertical strip - 7[ < u ~< 0; (iii) the lower path (v < 0) belongs to the vertical strip 0 ~< u < 7[. For 
a typical point P on the chosen plane (see fig. 1 ), we have 0<a<Tr.  We then exploit the allowed freedom in 
the choice of the integration path letting it to assume the form C' shown in fig. 2. The integral appearing in 
eq. (2) can then be divided into three contributions as follows 

11 

Fig. 1. Coordinate system used in this paper. 
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Fig. 2. Two possible integration paths for the evaluation of the 
function Hn(p) in eq. (2). 
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( - i ) " / .  ~ 
H , ( p ) =  n ~1 exp[ipcos(-a+iv)+in(-a+iv)] dr+  exp(ipcosu+inu) du 

- o o  

+i  ~ exp[ipcos(x-a+iv)+in(~-a+iv)] d r ) .  (4) 
0 

By simple change of variables eq. (4) can be transformed into the following one 

- i  exp[ipcos(a-iv)-nvl dr+  exp[ipcos(u-a)+inu] du 
0 0 

0 

- i ( - l )  n ~exp[-ipcos(ot-iv)-nv] d r ) ,  (5) 
- - o o  

where the CWn is now evidentiated on the left hand side. On expanding the cosine functions, eq. (5) becomes 

( - i ) "  / .J" H.(p) exp(inot) = it ~ - i  exp(ip cos a cosh v-p sin ot sinh v-nv) dv 
0 

+ i exp(~  cos a cos u + ~  sin a sin u+inu) du 
0 

0 

- i ( - 1  )n ~ e x p ( - i p  cos a cosh v+p sin a sinh v-nv)dr). (6) 
- - o o  

We now use the cartesian coordinates ~ and q shown in fig. 1. Equation (6) can then be expressed in the form 

H,(p, exp(inot,=(-i'"( ~ - i  exp(i~cosh V-qo sinh v-nv) dv 
0 

i ; ) + exp(i~cos u+i~o sin u+inu) d u - i ( -  1)n exp(i~cosh v-No sinh v+nv) dv , (7) 
0 0 

where the change v--, - v has been made in the last integral. The hypothesis qo > 0 ensures convergence of the 
first and third integrals because -~/o sinh v is the dominant term in the exponent. The functions cosh(v) and 
cos (u) can be inverted in [ 0 ,~  ) and [ 0,~ ], respectively. Accordingly, we let 

v= ln (~x / -~- l+f l )  (8) 

in the first and third integrals and 

v= cos - '  fl (9) 

in the second one. The following relation is then obtained from eq. (7) 
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H,,(p)exp(inot)-(-i)" ( ~  exp (ifl~- r/°x/fl2- I ) dfl 

1 

+ ~ exp(ip~+ir/o lx/i-S--fl2 + i n c o s - '  f l ) ~  
- -1  

+ ( - - 1 )  n 
- - I  

o,,, d# '~ exp(i,~-r/o flx/-fl TS- 1) ( f l v / ~  - l - v ,  ~ j .  
- - o o  

(lO) 

Equation (10) contains the required result. In fact, it can be given the form 

H,,(p) exp(inot)= i 

where 

F,(fl, r/o ) exp(ifl~) dfl, ~=pcos or, r/= r/o =p sin or>0,  (11 ) 

F.(fl, r/o)= (i)"--~l exp(-r/o flx//~-- 1) (~/fl 2-1  - f l ) "  - ~ < f l <  - 1 
7r X/fl 2 -  1 

( __i)n exp (ir/ox/I _f12 +in  cos - l  fl) 
- 2 ' 

( - i )  n+' exp(-r/0 flx/-fl-~-l) 
- ( ' 

- 1  < f l < l ,  (12) 

1 <fl<oo. 

The CW, is now expressed as a Fourier integral with respect to the variable ~. As well known [ 4 ], this is equiv- 
alent to representing the field produced by the CW, across the plane r/= r/o > 0 as a superposition of both ho- 
mogeneous and non-homogeneous (or evanescent) waves. More precisely, homogeneous waves correspond to 
the interval I#l < 1. 

Up to now, we assumed r/o > 0. However, it is not difficult to extend our result to the case r/o < 0. With ref- 
erence to fig. l, we note that the field produced at (~, r/o) by the CW, is 

Hn(p) exp ( iny).  ( 13 ) 

It is seen that the same field can be written as 

H,(p) exp(- int~)  = ( -  1 )" H_,,(p) exp( - i no t ) .  (14) 

This means that the field at (~, r/o) is ( - 1 )" times the field that would be produced at (~, I r/o I ) by the cy- 
lindrical wave of order - n .  The following rule then holds 

Fn(fl, r/o)=(-1)"F-n(fl, Ir/ol), r/o<O. (15) 

We further note that for n = 0 eq. (10) reduces to a known formula [ 5 ]. 
In fig. 3, we give the curves of the modulus of Fn(p, t/o) for n=  1 and r/o=0.1 (full line), r/o=0.25 (dashed 

line), and r/o=0.5 (dotted line). In fig. 4, curves are plotted for a fixed valueLof r/o (r/o=0.5) and different 
values of n (n = 0, full line; n = 1, dashed line; n = 2, dotted line). It can be seen that the relative weight of the 
evanescent waves increases when r/o becomes smaller and when n becomes greater. 

As a final remark, we add that the case of ingoing cylindrical waves can similarly dealt with because the 
Hankel functions of the second kind are simply the complex conjugate of those of the first kind. 
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Fig. 3. Modulus of F,(fl, ~/o) for )7o=0.1 (full line), )/o=0.25 
(dashed line) and t/o = 0.5 (dotted line). 
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Fig. 4. Modulus of Fn(fl, )/o=0.5 ) for n = 0  (full line), n = l  
(dashed line) and n = 2 (dotted line). 
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3. Diffraction of a plane wave by conducting cylinders 

Fig. 5. Description of the geometry for the scattering of a plane 
wave from a circular cylinder. 

The basic diffraction in which CW, are involved refers to a single circular cylinder illuminated by a plane 
wave. Several other two-dimensional problems of diffraction rely on the results obtained in the previous case. 
We quote, for example, diffraction from a conducting wire grating and diffraction from a set of conducting 
cylinders with various radii. Furthermore, a conducting surface that can be approximated by a set of  closely 
spaced wires [ 6 ] and this gives rise to a widely used technique for finding approximate solutions of  a lot of 
two-dimensional diffraction problems. Some basic properties of  the field diffracted by a single cylinder are 
carried over the solution of the more complicated problems. Accordingly, it may be helpful to use the results 
of  the previous section in order to outline some features of  the spectrum of plane waves that is produced by 
diffraction at a single cylinder. 

Suppose that a linearly polarized, monochromatic plane wave is orthogonally incident on a perfectly con- 
ducting circular cylinder of  radius a (fig. 5). Let us assume that the electric field vector E (i) of the wave is 
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parallel to the cylinder axis (E  polarization). The problem is of scalar nature. For the sake of  simplicity, we 
assume that the y-axis is parallel to the propagation direction of  the incident wave. The diffracted field, say 
E (d), can be expressed as a series of CW. as follows [7] 

E ( d ) ( r ,  a)---- ~ c.H.(kr) e x p ( i n a ) ,  ( 1 6 )  
n ~  - - o o  

where r and oe are polar coordinates in the (x, y)-plane. The coefficients c~ can be easily found and turn out 
to be 

c.=-&(~)lH~(~),  (17) 

where J ,  is the Bessel function of integer order n and of the first kind. For increasing I n I the moduli of the 
c, tend to get smaller and smaller, possibly in a non-monotonic way. As a rule oflhumb, for ka> 1 the c, become 
negligible when In I> 3ka. For ka< 1, the c, become very small when I nl exceeds a few units (say 3 or 4). 
The angular spectrum of the field given by eq. (16) can be evaluated by means of eqs. (11 ) and (12), by 
taking into account that p, { and q are replaced by kr, kx and ky respectively. 

In fig. 6 we show the modulus of the angular spectrum AE(fl) of the field E!  d) in arbitrary units, for three 
different values of the cylinder radius:/ca = 0.15 (full line), ka = 3.14 (dashed line) and/ca = 12.56 (dotted 
line), evaluated on a plane placed at a distance ky= 1.Ska from the cylinder axis. It is seen that increasing ka 
the radiation pattern becomes more and more anisotropic. At the same time the weight of the evanescent com- 
ponents diminishes. 

The complementary case of H polarization (H vector parallel to the x-axis) can be treated in a similar man- 
ner. The function E is replaced by H in eq. (16). The boundary conditions then lead to an expression analogue 
to eq. (17), where instead of the J~ and/am functions the respective derivatives appear. 

The previously discussed problem can be generalized to the case of scattering by an arbitrary arrangement 
of circular cylinders, having parallel, non-coplanar axes and possibly different radii. The field radiated by the 
jth element of the arrangement, say Ej (d), can again be expressed as a superposition of CW~ of the form ( 16 ). 
The values of the corresponding expansion coefficients, say c m, are then obtained through the solution of a set 
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Fig. 6. Modulus of the angular spectrum of the field diffracted by 
a single cylinder for three different radii:ka=0.15 (full line), 
ka=3.14 (dashed line) and ka= 12.56 (dotted line) evaluated 
at a distance ky= 1 .Ska. 
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Fig. 7. Modulus of the angular spectrum of the field diffracted at 
5 GHz by an array of  20 cylinders with 3 mm radius (ka=O.3) ,  
spaced by 28 mm (kd=  2.9) and evaluated on a plane at 3.5 mm 
(kh = 0.35 ) from their axes, The grating is illuminated by a plane 
wave at a 45 ° incidence angle. 
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of linear equations, which arises from the application of suitable boundary conditions [ 8 ]. In this way, by 
means of the plane wave expansion of the CWn (eq. ( 11 ) ), the angular spectrum of the field diffracted by the 
whole structure is obtained. Obviously, this is of relevant interest in the investigation of structures endowed 
with particular scattering properties. 

As an example, we show the results concerning a rather simple, but very significant arrangement: N circular 
cylinders with coplanar and equidistant axes and equal radii. Such a structure is often referred to as a finite 
array of cylinders. As we said in the introduction, the use of a grating of this type has been suggested [ 2 ] as 
a mean for coupling a microwave beam to the so called Lower Hybrid wave of a plasma through the evanescent 
waves produces by scattering at the grating. Taking into account the experimental requirements for the Lower 
Hybrid heating of the plasma [ 1 ], we analysed a structure that produces, in vacuo, an angular spectrum with 
one prevalent diffraction order in the evanescent wave region ( [8[ > 1 ). To this aim the choice of H polari- 
zation leads to better results, because in this case the coupling with the slow wave of the plasma is more ef- 
ficient; moreover, the power losses on the conducting cylinders are lower and the current distributions induced 
on the conducting surfaces produce spatially more rapidly varying fields, corresponding to angular spectra with 
high frequency components of larger amplitude. A typical result is shown in fig. 7. Here, we plotted the modulus 
of the angular spectrum AH(P) of the field diffracted by a finite array of 20 cylinders with radius a=  3 mm 
whose axes are spaced by d=  28 ram. A plane wave with 5 GHz temporal frequency illuminates the grating at 
a 45 degree incidence angle. After solving numerically for the cjn coefficients defined above, we computed the 
angular spectrum at a distance h = 3.5 mm from the grating by means of cq. (12). It is seen that the largest 
component of the spectrum lies in the evanescent wave region as required by the coupling problem. 
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