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Abstract. The Gupta method leads to the determination of the optical constants of an 
absorbing material through Iwo measurements of reflecljvity. In this paper. the effect of 
experimental errors on both the accuracy of the determination and the conditions for the 
achievement of unambiguous results is studied. 

1. Introduction 

The determination of the optical constants of a material is of fundamental importance 
in a large variety of applications. In the commonly used experimental set-ups, a sample 
of the material under study is made to interact with a radiation beam and the unknown 
optical constants are deduced through the measurement of some characteristics of the 
transmitted and/or reflected beam [l-91. 

In the case of strongly absorbing mateial, reflection measurements are obviously 
preferable and many methods have been envisaged in order to determine the optical 
constants through simple measurements of the reflectivity of the material [l0-19]. 
Among these methods, that proposed by Gupta in 1988 is of particular interest for its 
simplicity 1203. From an experimental point of view. the Gupta method requires only 
the measurement of the reflectivity of the material in the presence and absence of a 
transparent overcoat film. However, as a common drawback in this kind of problem, 
the analytic determination of the optical constants starting from the measured reflectivi- 
ties can lead to multiple solutions and the unknown optical constants can be 
unambiguously determined only if the wrong solutions are somehow recognizable. It 
has been demonstrated that, for a suitable range of the optical thickness of the overcoat 
film, the determination of the unknown optical constants is mathematically un- 
ambiguous and the limiting values of such a ‘useful interval’ of thicknesses have been 
found analytically [21]. 

In [21], the analytic treatment of the Gupta method and the subsequent evaluation 
of the conditions for an unambiguous determination of the optical constants are 
accomplished without taking into account the measurement errors. Errors in the 
measured reflectivities influence the application of the Gupta method in two ways. First, 
of course, they determine the uncertainties in the estimated values of the optical 
constants. Second, they can affect the ambiguity problem. A solution that is un- 
ambiguous in the absence of errors could become ambiguous if the errors exceed certain 
values. In this paper, we extend the analysis of [Zl] to determine quantitatively the effects 
of the measurement errors. In section 2, we briefly recall the mathematical basis of the 
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Gupta method showing the existence of a 'useful interval' for an unambiguous 
determination of the optical constants. In section 3, we estimate the accuracy which is 
achievable in the Gupta method and its dependence on the experimental conditions. In 
section 4, the ambiguity problem is studied by taking into account the experimental 
accuracy and a 'practical useful interval' is determined inside the theoretical one. Finally, 
in section 5, the results obtained are briefly discussed and some conclusions are drawn. 
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2. The mathematical basis of the method 

Let us denote by n and k the unknown optical constants of the material under study 
and by n1 = n - ik its complex refractive index. The normal incidence air-materid 
reflectivity is given by [22] 

where the refractive index of the air has been assumed equal to one and the material 
has been supposed sufficiently thick to completely absorb the wave reflected from the 
second interface. 

In addition to R,, a second measurement is needed in order to determine the two 
unknown quantities n and k .  In the Gupta method, the material is coated with a 
homogeneous plane-parallel non-absorbing film of known real refractive index n, and 
thickness d and the new reflectivity, say R,, is measured. We have [21] 

where 

(3) 
(1 - 4) sin(r) 

- 1  
2 

z =  
1 + U$ + (1 - n:) cos(?) nz[l + n: + (1 - n:) cos(y)I ' 

the asterisk denotes complex conjugate and 

y = 4m2d/?.. (4) 
In equation (4), J. is the wavelength of the radiation used. 

Making use of the two equations (1) and (2), the unknown quantities n and k can 
be calculated starting from the measured reflectivities R, and R,  for a given y value. 
The solution of this inverse problem has been discussed in [Zl]. For later convenience, 
we reproduce the essential steps in appendix 1. 

As i t  has been shown in [21], in the general case two pairs of solutions are obtained 
which we will denote by the superscripts I and 11, i.e. 

n', k' , (first solution) (5 )  

(second solution). (6) 
By inserting back into equation (1) and (2) the solutions given by equations ( 5 )  and 

(6), we obtain the corresponding values of the reflectivities, say R:, R\ and R:', RY, 

and 
k11 
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respectively. These results have to be compared with the measured reflectivities RI, R,, 
so that the case of a wrong solution for the optical constants can be recognized. 

It can be shown that the following relationship is always true 

(7) 

while the corresponding relationship for R, is true only outside a certain interval. Such 
an interval can be called a 'useful interval', because inside it one of the two solutions 
does not reproduce the right reflectivity R, and it can then be rejected as a spurious 
solution. As a consequence, for y inside the 'useful interval', the optical constants n, k 
can be unambiguously determined through the Gupta method. Furthermore, in [21], 
the extreme points (denoted by yl and y,) of the 'useful interval' have been explicitly 
evaluated in the general case and their numerical values for the practical case originally 
considered by Gupta [20] have also been calculated. 

[21] aimed at studying the mathematical ambiguity connected with the optical 
constant determination in the ideal limit case of absence of measurement errors. When 
these are taken into amount, the optical constant determination is affected by a certain 
degree of uncertainty and this influences the width of the 'useful interval'. In the next 
section, we will evaluate the accuracy with which the optical constants can be calculated 
starting from given errors in the reflectivity measurements. Correspondingly, we will he 
able to determine the effective width of the 'useful interval' in any practical situation. 

RI - RI1 - R 
1 -  1 -  1 

3. The accuracy of the method 

In this section, we evaluate the uncertainties in the calculated optical constants due to 
the measurement errors in the reflectivities. 

Let us indicate by RI,  and R2,,, the measured values of the reflectivities R I  and R,, 
respectively, and by ARl and AR, the corresponding measurement errors. Starting 
from some reflectivity values R,  and R,, included inside the intervals (RI,,, - AR,, 
R,, + AR,) and (R,,,, - AR2, R,, + AR,), respectively, the corresponding optical 
constants n' and kl (or n" and k") can be calculated through the well known formulae 
of error propagation 

where n; and kh, (or n!!, and k:) are the optical constant values corresponding to the 
measured reflectivities RI,  and Rzm. In equations (8) and (9), the superscripts I or I1 
must be assumed simultaneously and the explicit expressions of the partial derivatives 
at the right-hand sides of equations (8) and (9) are given in appendix 2 (equations 
(A2.10)-(A2.13)). 

It can be easily seen [23] that n' and k' (or ns and k") vary in the plane n', k' (or 
n", k") inside a parallelogram, centered on the point nk, k', (or n:, k!), whose corners 
have the following n coordinates 
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and the following corresponding k coordinates 

In equations (10)-(17), the superscripts 1 or 11 must be assumed simultaneously. 
By making use of these error parallelograms, the accuracy patterns shown in figures 

1 to 3 can be constructed. In all the figures, the numerical values of Gupta's original 
example are used. Although the degree of accuracy represented by a given parallelogram 
is somewhat arbitrary [23], it is evident from the figures that the accuracy decreases 
when the measurement errors increase (figure l(a)) and that, for a given reflectivity 
error, less accurate parallelograms arise from y values near the border of the 'useful 
interval' (figure I@)). Furthermore, it can be noted from figures 2 and 3 that, when y 
approaches x,  the two solutions given by equations (5) and (6) tend to coincide and the 
corresponding parallelograms partially overlap. As a consequence, a y interval exists 
inside which the propagation of the measurement errors makes the two solutions for 
the optical constants indistinguishable. Figures 2 and 3 refer to different per cent errors 
in R I  and R,: these amount to 27; in figure 2 and to 4% in figure 3. The comparison 
between the two figures shows that the 'indistinguishableness interval' enlarges in 
correspondence to  greater per cent errors in the measured reflectivities. 

In the next sectioa we will consider the effects of the measurement errors on the 
ambiguity problem. 

4. Tbe ambiguity problem 

Starting from the pairs of solutions n', k' and n", k", we can trace back to the 
corresponding reflectivities R:, R: and RY, R i .  As already mentioned in section 2, in the 
absence of measurement errors, a 'useful interval' of y values exists for which 
R, = RY # R: or R,  = R: # R:, so that the true optical constants can be unambiguously 
determined. In [21], the extreme values y ,  and y2 of this interval have been analytically 
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1.56 1.58 1.6 1.62 1.64 1.66 
n 

Figure 1. (a) Error parallelograms centred on the right solution for the optical constants n 
and k. in correspondence to several Yalues of the per cent errors in the reflectivities R ,  and 
R ,  (full line, AR,IR, = AR,/R,  = 1%; broken line, A R , / R ,  = AR,/R,  = 2%: dotted line, 
A R , / R ,  = ARR,/R, = 4%). The phase shifty undergone by the reflected radiation for a round 
trip through the coating material corresponds to the centre of the 'useful interval' ( y  = 4.6). 
The true values of the optical constants are n = 1.61 and k = 0.4% the real refractive index 
of the coating film is ni = 1.95. (6) Error parallelograms centred on the right solution for 
the optical constants n and k, in correspondence to y values corresponding to the Centre of 
the 'useful interval' (full line, y = 4.6) or to its borders (broken line, y = 2.7; dotted line, 
y = 5.9). The per cent errors in the reflectivities R ,  and R, are A R , J R ,  = AR,iR, = 2%. 
The true values of the optical constants are n = 1.61 and k = 0.42; the real refractive index 
of the coating film is n2 = 1.95. 

calculated to hold 
2n2k(P + R )  

(1 + n$)(M + R)  
y ,  = 2 tan-' 

and 
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n 

0.5 1 

, , . . , I  
1.5 1.55 1.6 1.65 1.7 

n 

Figure 2. Error parallelograms centred on the right (full line) and wrong Cbroken line) 
solutions for the optical constants n and k, in correspondence to (U) y = 3.09 and 
(b) y = 3.19. The true values of the optical constants are n = 1.61 and k = 0.42; the real 
refractive index of the coating film is n2 = 1.95. The percent errors in the reflectivities R ,  
and R ,  amount to 2%. 

where 
P = 1 + k2 + n2 
M = 1 + k2 - nz 
R = [(1 + kZ + n2)’ - 4nz]”2 

In the presence of the measurement errors ARl and AR,, the optical constants can 
be calculated with the uncertainties determined by the error parallelograms constructed 
in the preceding section. 

As a consequence, also the quantities R: and R:’ are affected by some uncertainties, 
say AR: and ARY, respectively. These uncertainties can be easily evaluated as 
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, " " ~ " ~ ' " " ~ l ' ' ~ ' l  
I .5 1.55 1.6 1.65 1.7 

n 

3 

1.5 1.55 1.6 1.65 1.7 
n 

Figure 3. Error parallelograms centred on the nght (full line) and wrong (broken line) 
solutions for the optical constants n and k, in correspondence to (U)  y = 3.03 and (b) y = 3.24. 
The true values of the optical constants are n = 1.61 and k = 0.42; the real refractive index 
of the coating film is n2 = 1.95. The per cent errors in the reflectivites R ,  and R ,  amount 
to 4%. 

where 

In equations (23)-(25), the superscripts I and I1 must be assumed simultaneously. 
The uncertainties AR; and AR? reduce the effective width of the 'useful interval' 

for an unambiguous optical constant determination. This is shown pictorially in figure 
4, with reference to the same practical example originally considered by Gupta [20] 
and then studied in [Zl]. In this figure, the reflectivity calculated starting from the wrong 
solution (that is R i  for 2.6 < y < n and R:' for n < y < 5.9) is compared with the 
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Figure 4. Comparison between the reflectivity calculated starting from the wrong solution 
(that is R: lor 2.6 < 7 < n and K: far R < p < 5.9) together with i t 6  uncertainly and the 
measured reflectivity together with its uncerlainty. The true values of the optical constants 
are n = 1.61 and k = 0.42: the real refractive index of the coating film is n2 = 1.95. All the 
reflectivities arc drawn as a function ol thc phase shift 7 undergone by the reflected radiativn 
in correspondence to a round trip through the coating material. The per cent errors in the 
reflcctivitics R ,  and R ,  are assumed q u a l  to (a)  2% and ( h )  4%. As a consequence 
of the measurement errors, the ‘useful interval’ narrows down to ( a )  2.66 < 7 < 5.87 and 
(h )  2.71 < y < 5.83, while the ‘indistinguishableness interval’ enlarges up to (a) 3.09 < 7 < 
3.19 and (h) 3.03 < p < 3.24. 

measured reflectivity R,. Both the reflectivities are drawn together with the uncertainty 
arising from the measurement errors. These amount to A R I / R t  = ARJR, = 2% in 
figure 4(u) and to ARJR,  = AR,/R, = 4% in figure 4(b). Due to the measurement 
errors, the wrong solution can be recognized and then rejected for an interval of ’J values 
whose width decreases when AR,/R,  and ARJR, increase. This means that the ‘useful 
interval’ of y values allowing an unambiguous determination of the optical constants 
gets narrower when the measurement errors increase. At the same time, the reflectivities 
are also indistinguishable for a y interval around n, whose amplitude increases with the 
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measurement errors. This effect is connected with the superposition of the error 
parallelograms pointed out in figures 2 and 3. 

In the general case, the maximum displacement (towards the right) Ayt of the left 
limit y 1  of the 'useful interval' and the maximum displacement (towards the left) Ayz 
of the right limit y z  of the same interval can be analytically evaluated to hold, respectively 

where 

M" + RI1 + [2(k11)2/R"](M" - P")  
(29) 4n:(k")'(P" + RI')' + (1 + n:)'(M" + 1 -= 4n2(l + n$)(P" + R" 

aklI 

n'(M' + P' - 2R') + (n lP1/R') (P1 - MI) + (2nl /R1)(M' - PI) 
4n;(k')'(P1 - RI)' + ( 1  + n:)'(M' - RI)' 

-= 8n,k'(l + n f )  
an' 

(30) 

M '  - R1 + [2(k')z/R'](P' - M I )  
4n:(k1)'(P' - RI)' + (1 + n:)'(M' - RI)'' 

9 = 4n2(l + n:)(P' - RI) alii 
In equations (28)-(31), PI, MI, RI and PI', ME', R" are the expressions in equations (20), 
(21)  and (22) calculated in correspondence to the solutions given by equations (5 )  and 
(6), respectively. 

5. Concluding remarks 

In this paper, the accuracy of the method originally proposed by Gupta for the 
determination of the optical constants of an absorbing material has been studied. The 
method is based on two measurements of the reflectivity of the material in the presence 
and absence of a transparent overcoat film. The unknown optical constants can be 
unambiguously determined provided that the optical thickness of the overcoat film is 
within a 'useful interval' of thicknesses. In the preceding sections, the experimental 
errors in the measured reflectivities have been demonstrated to  influence both the 
accuracy with which the optical constants are determined and the amplitude of the 
'useful interval' of thicknesses allowing the achievement of unambiguous results. In 
particular, the accuracy of the optical constant determination has been evaluated 
analytically through the propagation of the measurement errors and represented 
graphically through the construction of error parallelograms. The results show a 
decrease in the accuracy when the experimental errors increase and specify the optical 
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thicknesses of the overcoat film in correspondence to which larger accuracies are 
obtained for given reflectivity errors. Furthermore, an optical thickness interval is also 
determined in correspondence to which the error parallelograms overlap and the two 
solutions obtained for the optical constants are indistinguishable. As expected, the 
amplitude of this interval tums out to be an increasing function of the measurement 
errors. 

Finally, the limits of the ‘practical useful interval’, i.e. the ‘useful interval’ of 
thicknesses allowing an unambiguous determination of the optical constants in the 
presence of measurement errors, have been determined analytically. With reference to 
the numerical example originally proposed by Gupta. the limits of the ‘practical useful 
interval’ have also been determined through a graphical method. The results obtained 
emphasize the narrowing of the ‘useful interval’ when the experimental errors in the 
measured reflectivities increase and the rise inside it of an ‘indistinguishableness 
interval’, in correspondence to which the two solutions for the optical constants coincide 
(within the limits of the error uncertainty). The amplitude of this interval is shown to 
be an increasing function of the measurement errors. 

It should be noted that, in principie, every kind of experimental error influences the 
accuracy with which the optical constants can be determined and then produces a 
narrowing of the useful interval we discussed in this paper. For instance, instead of 
referring, as we did, to the experimental errors in the measured reflectivities, we could 
refer to the uncertainty about the knowledge of the thickness and/or of the index of 
refraction of the transparent overcoating layer. However it is evident that the ambiguity 
problem is affected in the same way by any source of error so that the conclusions we 
draw in this paper can be referred to any kind of experimental error. 

P De Santis et ai 

Appendix 1 

Let us introduce the following notations for the modulus and the argument of the 
complex refractive index n ,  = It - ik 

n,  = N exp(i4) N = (n’ + k2)”’ 4 = tan-’(-k/n). (Al.1) 

Furthermore, let us indicate by X and Y the real and imaginary parts, respectively, of 
the complex number z as defined by equation (3), Le. let us put 

(A1.2) 

2 
1 + n: + (1 - n:) cos y 

z = X - i Y  X =  

(1 - n:) sin y 
n2[1 + n; + (1 - n:) cos 71 Y =  

and let us introduce the following notation for its modulus and argument 

z = 2 exp( - io) z = (XZ + Y y  B = tan-’(Y/X). (A1.3) 

By making use of equations ( A l l )  and (A1.3), equations (1) and (2) can be 
alternatively written as 

1 + N 2  - 2N cos4 
1 + N Z  + 2 N c o s 4  

R, = (A1.4) 
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and 

1 + N 2 Z 2  - Z N Z c o s ( 4  - 0) 
R ,  = 

1 + N 2 Z Z  + 2NZ cos(4 + 0) 

- 

335 

(A1.5) 

respectively. 
Starting from equations (A1.4) and (AM), the following equations are obtained for 

the modulus, the real part and the imaginary part, respectively, of the unknown complex 
refractive index n1 

h2N4 - h2 112 N2(hZZZ - hlX) + (h2 - h lX)  -h2flN2(4 - 2h:) - 1 11 ' 

(A1.6) 

2N COS 4 = h,(l + N2) 

2N sin4 = -[4N2 - h;(l + N2)2]1'2. 

where we put 

(A1.7) 

(A1.8) 

(A1.9) 

(A1.lO) 

By squaring both sides of equation (A1.Q the following equation of the second 
degree for N 2  is obtained 

aN4 + 2bN2 + e = O  (Al.11) 

where 

a = (h2ZZ - h,X)' + hfh:YZ (A1.12) 

b = (h2 - hlX)(hzZ2 - h lX)  - (2 - h:)h4Y2 

c = (h, - h,X)' + h:hzY2. 

(A 1.13) 

(A 1.14) 

The two solutions of equation (Al.11) wiU be denoted by the superscripts I and I1 
and the same will be done for the corresponding optical constants. From equation 
(Al.lI), we have 

(Nz)' = (l/u)[-b + (b2 - a ~ ) " ~ ]  

(N2)" = (l/u)[-b - (b2 - ac)'"]. 

(Al. 15)  

(A1.16) 

and from equations (A1.7) and (AM), we have 

(n)'J = +h,(l + (NZ)IL'') (A 1.17) 

and 

(k)"" = +{4(NZ)'~11 - h;[1 + (N2)1,11]2}1/2 (Al.18) 

respectively. In equations (A1.17) and (Al.lS), the superscripts I or I1 must be assumed 
simultaneously. 
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Appendix 2 

In this appendix, we calculate the explicit expressions of some partial derivatives that 
are utilized in the paper. 

P De Santis et a1 

From equation (A1.9) and (.41.10), we obtain 

dk . -2 
dR, (1 + R,)' 

for j = 1,2. (A2.1) I -  -- 

From equations (A1.12), (A1.13) and (A1.14), we obtain respectively 

aa dk 
-= [-2X(k,ZZ - klX) + 2k,k:Y2] 
aR1 dR 1 

ab dkl 
aR 1 dR 1 
-= {X[2k,X - kz(l + Z')] + 2h1h:YZ} - 

ac dh - _  - [-2X(k, - k1X) + 2h,k:YZ] 
aR 1 dR 1 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 

(A2.7) ac dk2 
dR2 dR2 
- = [2(k, - k1X) + 2k:kzYZ] -. 

From equations (A1.15) and (A1.16), we obtain respectively 

-- - {[-ac + 26' + 2b(bz - ac) ' "] (Ja /~Rj)  + [-2ab - 2a(b2 - a ~ ) ~ ' ~ ]  a(N2)" 

aR, 

a(N ')I1 -- - { [ -ac  + 2b2 + 2b(bz - ac)"'](da/8Rj) + [-2a6 - 2a(b2 - a~)'"] 
aRj 

x (ab/aR,) - a2(ac/r3R,)}[2a2(6' - a ~ ) ~ " ] - ~  (A2.8) 

x (ab/aR,) + a'(ac/~RI)1[2a'(6' (A2.9) 

where j = 1,2. 
Finally. from equations (A1.17) and (A1.18), we obtain respectively 

an"'' dk, 1 + (N')'*" k, 2(N2)','' +-- 
dRl 2Rl - 7 2 ZR, 

- (A2.10) 

(A2.11) 
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(A2.13) 

In equations from (A2,10)-A2.13), the superscripts I or I1 must be assumed 
simultaneously. 
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