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Coherence and the spatial distribution of intensity
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We address the following problem: Can two wave fields with different coherence properties produce the same
optical intensity everywhere in the space? Limiting ourselves to paraxial propagation, we prove that in the
one-dimensional case the answer is negative. On the other hand, in the two-dimensional case we show through
examples that the answer is affirmative. Some consequences are discussed.

1. INTRODUCTION

It is well known that wave fields in different states of co-
herence can give the same optical intensity distribution
across a selected plane. One of the most famous ex-
amples is given by the Collett-Wolf sources.'13 These are
Gaussian-correlated, partially coherent sources that can
produce the same far-zone optical intensity pattern as
that of a lowest order coherent laser beam. The study of
these sources has given rise to many results. 4 -" The
existence of these sources shows that knowledge of the
optical intensity across a certain plane is by no means suf-
ficient for a determination of the coherence properties of a
wave field. This remark is somewhat trivial, inasmuch as
the optical intensity at a certain temporal frequency cor-
responds only to the diagonal elements of the correlation
function, namely, the cross-spectral density.'2 But now
let the optical intensity produced by a wave field in a cer-
tain state of coherence be fixed throughout the space.
Can another wave field with different coherence proper-
ties give rise to the same intensity everywhere? In the
present paper we try to answer this question and to eluci-
date some of the consequences.

In order to make clear the motivations of our study, we
add a few remarks. A conceptually simple way to specify
the coherence properties of a radiation field (at least to
second-order level) is to give the cross-spectral density, at
any selected temporal frequency, across an arbitrary
plane orthogonal to the mean direction of propagation of
the field. Once this is done, direct and inverse propaga-
tion formulas permit one to evaluate the cross-spectral
density at any pair of points. From an experimental
point of view, this procedure is generally hard to carry
out. Not only is the measurement of the cross-spectral
density an error-sensitive and time-consuming operation,
but the measurements themselves fill a four-dimensional
space because the correlation function depends, at each
temporal frequency, on a pair of points. Stated in differ-
ent terms, a partially coherent field has a huge number of
degrees of freedom. Incidentally, this is why, still today,
we cannot record a partially coherent field in a simple
way, except in the limiting case of full coherence, for

which holographic methods apply. On the other hand, the
optical intensity alone can be measured rather easily.
Therefore it is interesting to inquire about the constraints
that the spatial distribution of the optical intensity im-
poses on the coherence properties of the field. Suppose
that the intensity distribution throughout the space fully
determines the cross-spectral density. Then, this charac-
terization could afford an alternative approach to the
problem of measuring the coherence functions of a field.
On the contrary, suppose that the intensity distribution
alone does not determine completely the cross-spectral
density. In this case we could find fields that at no point
in space can be distinguished on an intensity basis and
yet are physically different. Their difference would play
an important role in interferometric, diffractive, and scat-
tering experiments.

In most of this paper we shall limit ourselves to the hy-
pothesis of paraxial propagation. The conditions under
which such a hypothesis applies for partially coherent
fields are discussed in Ref. 13. While it is not extremely
general, the paraxial propagation encompasses a large
class of cases of practical interest. Roughly speaking, the
basic condition to be met is that the field should propagate
within an angular range that is not too large. This can
be safely assumed, e.g., when the field propagates in the
form of a more or less collimated beam and also when the
field propagates through most optical systems. Here we
are interested in free-space propagation.

A distinction will be made between one-dimensional
and two-dimensional cases. To avoid misunderstanding,
we find it useful to specify the meanings of these terms.
Let z be a Cartesian coordinate along the mean direction
6f propagation of the field. We say that a certain case is
of the one-dimensional type if all the quantities of interest
are insensitive to one of the transverse coordinates x and
y. Assuming y to be the irrelevant coordinate, this
means, e.g., that the correlation function at two points
(x,yi,z) and ( 2 ,y 2 ,z) depends on xi, x2, and z only.
Needless to say, a two-dimensional case is one in which
both transverse coordinates are to be considered.

After a brief recall of some basic quantities of coherence
theory (Section 2), we shall prove that in the one-

0740-3232/93/040673-07$05.00 © 1993 Optical Society of America

Gori et al.



674 J. Opt. Soc. Am. A/Vol. 10, No. 4/April 1993

dimensional case the distribution of the optical intensity
throughout the space uniquely determines the cross-
spectral density everywhere (Section 3). Such a proof
does not hold in the two-dimensional case. In such a case,
in fact, we shall be able to construct classes of fields pos-
sessing different coherence properties all of which give the
same optical intensity everywhere (Section 4).

2. PRELIMINARIES

At any given temporal frequency v the spatial coherence
properties of a field are described by the cross-spectral
density function.'2 For two typical points with position
vectors r and r2 the cross-spectral density W(ri,r2 ; v)
can be evaluated through the following average'4 :

W(ri,r 2 ; v) = (V(r,; v)V*(r2; v)), (2.1)

where V is the optical disturbance and the average is to be
made over a suitable ensemble of monochromatic fields.
In Eq. (2.1) the asterisk denotes the complex conjugate.
When ri = r2 r, Eq. (2.1) reduces to

I(r; v) = (V(r; v)2), (2.2)

i.e., to the so-called optical intensity at frequency v. In
terms of the cross-spectral density function, one may de-
fine the quantity

A(ri, r2; ) = W(ri, r2; 01 [I(ri; v)I(r2; V)]112, (2.3)

namely, the degree of spatial coherence, which is normal-
ized in such a way as to yield

0 c /h(ri,r 2 ;v)j 1 (2.4)

for all values of ri, r2 , and v.12 The limiting values 0 and
1 in inequality (2.4) indicate that the light fluctuations at
frequency v at the points ri and r2 are uncorrelated and
completely correlated, respectively.

Before concluding this section, we deduce the propaga-
tion formulas for the cross-spectral density in the paraxial
regime. Here and in what follows, we omit, for the sake
of brevity, the explicit dependence on v. We denote by
Wo(pl, p2) and W(r,, r2 , z) the cross-spectral density func-
tions across the plane z = 0 and across a plane z = const,
respectively, of a suitable reference frame. In the case of
completely coherent fields the propagation problem can be
solved by means of the Fresnel diffraction formula 15 6

kz)]fUP,0)ex~i~L~r p)2]d
U(r, z) =- [exp(ikz)] U(po)exp i (r- dp,

(2.5)

where A is the wavelength of the radiation and k = 2/A.
In the more general case of partially coherent fields an
expression similar to that of Eq. (2.5) can be deduced with
the use of Eq. (2.1). In fact, owing to their monochro-
maticity, the fields V(r) in Eq. (2.1) are perfectly coherent
and therefore propagate according to Eq. (2.5). By
combining Eqs. (2.1) and (2.5), we deduce the paraxial
propagation formula for the cross-spectral density:

W(r,, r 2 , z) = (Az)
2 if Wo(p,P 2)

(,kZ)2 ff)2]d~d

X exp{i [(ri - p1)2 - (r2 - P2( dpldP2-

(2.6)

3. ONE-DIMENSIONAL CASE

For a certain partially coherent field belonging to the one-
dimensional class, let the optical intensity I(x, z) be known
at any point (x, z). Denote by W0(4l, e2) the cross-spectral
density across the plane z = 0. The relationship between
Wo and I is derived from Eqs. (2.2) and (2.6) under the
one-dimensional constraint:

I(x,z) = 1 i fwO (5, 62)

X exp{ [Az 2 612 x(: - 2) dd -

(3.1)

Equation (3.1) holds for both z > 0 and z < 0.
The problem in which we are interested is an inversion

problem: Can W0 be evaluated from knowledge of I? We
shall show below that an affirmative answer can be given.
More precisely, we shall prove that a unique solution ex-
ists. On the other hand, we will not dwell on the con-
struction of an explicit inversion formula.

To begin, we assume that z =$ 0 and introduce the new
variables

c = ( + 2)/2, T= ( 2 - )/AZ. (3.2)

In terms of these variables Eq. (3.1) is written as

I(x, z) = if Lo(o-,AzT/2)exp[-21ri(or - x)r]do-dT, (3.3)

where Lo is the cross-spectral density at z = 0 referred to
a different frame. More explicitly, we put

Lo(s,t) = WO(s - t,s + t). (3.4)

Let us denote by I(p, z) the one-dimensional Fourier
transform of the function I(x, z) with respect to the first
variable, namely,

1fp, z) = I(x, z)exp(-21ripx)dx. (3.5)

After inserting Eq. (3.3) into Eq. (3.5), we obtain

I(p, z)= f Lo(o; Azp/2)exp(-27riop)dco. (3.6)

Similarly, we denote by Lo(p, t) the Fourier transform of
Lo(s, t) with respect to the variable s, or

Lo(p, t) = f Lo(s, t)exp(-27rips)ds. (3.7)

It is seen by comparison of Eqs. (3.6) and (3.7) that the
following relation holds:
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Fig. 1.
of z.

p

Linear relationship between t and p for any fixed value

I(p, z) = Lo(pAzp/2). (3.8)

Although this result has been derived under the hypothesis
z $ 0, it is not difficult to show that it holds true for z = 0
too. In fact, letting t = 0 in Eq. (3.7) and using Eq. (3.4),
we obtain

Lo(p,o) f W(s,s)exp(-2irips)ds. (3.9)

If we recall further that Wo(s, s) = I(s, 0), we see that
Eq. (3.9) can be written as

Lo p ) = I pO), (3.10)

which is the same as Eq. (3.8) with z = 0.
We now examine the consequences of Eq. (3.8). Let us

consider the (p, t) plane (see Fig. 1), and let z have any
fixed value. From supposed knowledge of I(x, z) we pass
to I(p, z) by a Fourier transformation. This in turn gives
the values of Lo along the line t = Azp/2 through the ori-
gin [see Eq. (3.8)]. When z spans the whole axis (from -o
to +), such a line sweeps the (p, t) plane by rotating
around the origin. Therefore knowledge of I(x, z)
throughout the space entails a unique determination of
Lo(p, t) across the (p, t) plane. Ultimately, by Fourier in-
version the function Lo(s, t) and hence [see Eq. (3.4)] the
cross-spectral density W0 are uniquely determined.

We have reached the following conclusion: In the one-
dimensional case it is impossible for fields with different
correlation functions to produce the same optical intensity
distribution everywhere in the space. As a corollary, no
partially coherent field can give everywhere the same in-
tensity as that from a fully coherent one.

Let us summarize and add a few comments. In the
one-dimensional case two wave fields with different states
of coherence can be distinguished on the basis of the in-
tensity distributions that they produce in space. In prin-
ciple, there exists a unique solution to the following
inverse problem: Given the optical intensity I(x, z), find
the cross-spectral density at the plane z = 0. We can ask
whether these results can be turned into some practical

method that evaluates the coherence properties of a field
from knowledge of the intensity alone. This question is
beyond the aim of the present paper, but some simple re-
marks can be made. The ideal inversion procedure would
require knowledge of I(x, z) at any plane z = const. In
practice, I(x, z) can be measured in a finite range of values
of z, say from z = z1 to z = Z2. According to Eq. (3.8) this
amounts to knowledge of Lo(p, t) within the striped region
of Fig. 2. In other words, a filtered version of Lo(p, t)
would be available. Although such limited knowledge of
Lo(p, t) does not permit an exact inversion, except perhaps
in the presence of some prior knowledge of, or constraint
on, W0, a somewhat blurred version of W0 could be recov-
ered. It is seen that a typical inverse problem with par-
tial information is opened up by the present results. 7

4. TWO-DIMENSIONAL CASE

We now turn to the general, two-dimensional case, and we
ask again: Can two wave fields possessing different co-
herence properties give the same optical intensity at all
points of the space? In the one-dimensional case this pos-
sibility is excluded by the proof given in Section 3. It is
easy to show that such a proof cannot be extended to the
two-dimensional case. This result, in itself, does not
mean that one could not find a different proof. In order
to discard such a hypothesis, we shall resort to a different
argument. We shall simply show that the answer to the
opening question is affirmative by constructing some
classes of fields with the required property.

The basic tool that we are going to use is a coherent
field with the following distribution in the plane z = 0:

V.(+"(r,0,0) = F.(r,0)exp(inO), (4.1)

where r and 0 are polar coordinates, n is a positive integer,
and Fn(r, 0) is an arbitrary, circularly symmetric function.
Of course, we assume that Fn is endowed with sufficient
regularity properties, so that the diffraction integral in
which it is going to be inserted makes sense. Note that

p

Fig. 2. Accessible region in the (p, t) plane where the optical in-
tensity is known for a finite interval of z values (z, z s Z2).
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the inclusion of the subscript n after the F does not neces-
sarily mean that F,(r, 0) shows any dependence on n. As a
consequence, it could be omitted. On the other hand, we
shall see in a moment that the effect of propagation on the
radial part of the field does depend on n. Therefore we
also use the index n in the plane z = 0.

At any plane z = const. # 0 the field corresponding to
Eq. (4.1) can be evaluated by means of the Fresnel diffrac-
tion integral [Eq. (2.5) above]. The resulting field at z
const, say Vn(+)(r, 0, z), has the form (see Appendix A)

Vn1)(r, 0, z) = F(r, z)exp(inO), (4.2)

W(rj,0l, r2, 02; Z)

= Tn~n(r,, z)Fn*(r2, z){exp[in( 1 - 02)1}

x {cos2[n(0l - 02)] + en2 sin2 [n(0l - 02)1}/2, (4.10)

where

Sn(0- 02) = tan'{etan[n(0, - 02)]}. (4.11)

In particular, setting r, = r2 = r and 01 = 02 = 0, we find
that the optical intensity is axially symmetric and has the
expression

(4.12)where In(r, z) = TnIFn(r, z)2.

F (r z) = +(- {ilexpjikz F .,O)

[ x 2zJ2z J( z

On inserting Eqs. (4.10) and (4.12) into Eq. (2.3) above, we
find the degree of spatial coherence:

(4.3)

Here J is the Bessel function of the first kind of order n.
We now introduce another field distribution across the
plane z = 0, namely,

Vn(-)(r,0,0) = Fn(r,0)exp(-inO). (4.4)

The only difference between the fields described by
Eqs. (4.1) and (4.4) is the sign in the exponential function.
On evaluating the field corresponding to Eq. (4.4) at a
typical plane z = const $4 0, we find (see Appendix A)

Vn(-)(r,0, z) = Fn(r, z)exp(- inO). (4.5)

If we compare Eqs. (4.2) and (4.5), we see that the two
fields Vn(+) and Vn(-) produce the same optical intensity ev-
erywhere because they differ only by a phase factor. We
note that each is perfectly coherent. If we now construct
an ensemble of superpositions of Vn(+) and Vn(-) with uncor-
related coefficients, the spatial distribution of the optical
intensity will remain of the same form as n or IVn(~) 2,
whereas the coherence properties will change. Let us
proceed to an explicit evaluation of the pertaining cross-
spectral density. We denote by Vn(r, 0, z) a typical member
of the ensemble, or

Vn (r, 0, z) = an Vn (r, 0, z) + an 0, z), (4.6)

where a,(+) and an(-) are uncorrelated random coefficients.
Using Eqs. (2.1), (4.2), and (4.5), we find that the cross-
spectral density at any plane z = const is given by

Wn(ri, 0, r2 ,0 2 ; z) = Fn(ri, z)Fn*(r2 z)

x {(Pn + Mn)cos[n(0l - 02)]

+ i(Pn - Mn)sin[n(0l - 02)]}, (4.7)

An(rl,01, r2,02; Z)

= (exp{i[bfn(rj, z) - (Fn(r2, z) + Bn(01 - 02)]})

x {cos2 [n(0 - 02)] + n2 sin 2[n(01 - 02)]}/2, (4.13)

where On is the argument of the function Fn.
The meaning of the present results can be seen from

Eqs. (4.12) and (4.13). The former shows that the optical
intensity does not depend on en, whereas the latter shows
that ,un is a function of en. In this way we have a one-
parameter family of fields all of which possess the same
intensity everywhere while possessing different coherence
properties. The parameter en can vary from -1 to 1.
The extreme values (en = 1) correspond to the two coher-
ent cases in which only one of the two fields Vn(+' and Vn(-'
is present. The modulus of ,, is then equal to 1. Any
other value of en gives a partially coherent field. In par-
ticular, if en = 0, we derive from Eq. (4.13) the relation

l n(rl, Ol, r2 ,0 2; z)I = cos[n(0j - 02)1 . (4.14)

In this case any pair of points with an angular separation
equal to an odd multiple of 7r/2n has a vanishing degree of
spatial coherence.

A simple example of the previous class is obtained when
Vn` and Vn(-' at z = 0 have the explicit expression

V,(~)(r, 0, 0) = Ar exp(- r2 /w0
2)exp(±iO), (4.15)

where A and w0 are constants. As is well known, these
are two particular Laguerre-Gauss laser modes8 taken at
their waist, with spot size w0. It can be noted that the
linear combinations

Vl(+)(r, 0, 0) + Vl()(r, 0, 0) = 2Ar exp(- r2 /w0
2 )cos 0,

(4.16)

Vl(+)(r,0,0) - V,`(r,0,0) = 2iAr exp(-r2/w0
2)sin 0

where (4.17)

P. = (an('12), M = (an' 1
2).

If we set

T = P + M. I e = (P - M)/(P + M.) 

Eq. (4.7) can be written as

(4.8) have the same structure as the two Hermite-Gauss modes
that are generally denoted by TEM,0 and TEM01, respec-
tively. Any superposition of the fields (4.15) with uncor-
related coefficients gives rise to the following intensity

(4.9) distribution across the plane z = 0:

Il(r,0) = TA 2r2 exp(-2r2/w, 2), (4.18)
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as one can see from Eqs. (4.1), (4.4), (4.9), (4.12), and
(4.15). On the contrary, the modulus of the degree of spa-
tial coherence depends on the relative weight of the two
modes, which is given by Eq. (4.14) with n = 1.

A pattern of the form (4.18) is often encountered in
laboratory practice with lasers and is generally referred to
as a doughnut mode. It is believed that such a pattern is
due to a mixture of TEM10 and TEM0, modes oscillating at
slightly different frequencies. 9 In order to preserve the
circular symmetry, one must assume that the two modes
have the same mean power. It is to be noted that in this
case one refers to the time-averaged intensity, which is
obtained by integration of the frequency-dependent opti-
cal intensity over the spectral range of the radiation field,
inasmuch as contributions at different frequencies add up
incoherently. The previous results show that, in prin-
ciple, a doughnut mode could be interpreted as an incoher-
ent superposition of the fields (4.15) with any relative
weight. Practical details of the laser cavity may suggest
which interpretation of the pattern (4.18) is more appro-
priate. In any case the important point to be made is that
the only way to distinguish between a pure Laguerre-
Gauss mode [either V11+1 or W-11 and a superposition of
modes is to measure the degree of coherence.

We can generalize the previous results by summing
Eq. (4.6) over a certain (possibly infinite) number of val-
ues of n, i.e., by constructing a field of the form

V(r, , z) = 7 V(r, 0, z) (4.19)

Any of the fields V is subject to the same regularity condi-
tions as those for the field discussed after Eq. (4.1). In
addition, of course, the sum in Eq. (4.19) must be conver-
gent if an infinite number of terms is implied. We assume
that the coefficients a(:) behave on ensemble average as

(a.(+)a.(+)*) = Snm Pn (a,,()am(-)*) = 5 nm Mn 

(a,(+)am()*) = 0 (n, m = 1, ±2,...). (4.20)

In this case the cross-spectral density and the optical in-
tensity can be written as

W(r, 1; r2 ,02 ; Z) = Wn(rl,@1; r2,92; Z), (4.21)

I(r, 0) = 2 In (r, 0), (4.22)

respectively, where Wn and In are given by Eqs. (4.10) and
(4.12), respectively. The coherence features of the field
depend on two sets of parameters, namely, Tn and en [see
Eqs. (4.9)]. On the other hand, the optical intensity de-
pends only on Tn. As a consequence, we can change at
will any of the en values between -1 and 1, thus producing
coherence variations while leaving unchanged the optical
intensity. It is to be noted, however, that none of the
present fields is completely coherent unless the sum in
Eq. (4.19) reduces to a single term, say n = m, and IEm = 1.

The previous cases might suggest that fields with equal
intensity and different coherence are necessarily endowed
with axial symmetry. This is not true, as the next simple
example shows. Let us consider the following field distri-
butions across the plane z = 0:

V(+)(x, 0) = Ax cos(,3x) + iAy cos(,fy),

V(-)(x, 0) = Ax cos(13x) - iAy cos(Qy),

(4.23)

(4.24)

where Ax, Ay, and $ are real constants. It will be noted
that

VI-)(x, 0) = V(+)*(x, y, 0). (4.25)

The effect of propagation on the fields (4.23) and (4.24) is
simply to multiply them by a phase factor. More explic-
itly, we have

V()(x y z) = {exp[iz(k2 - 32)"2]}V((x, y, 0), (4.26)

which can be seen immediately by an elementary plane-
wave expansion.2 0 It should be noted that in this case
the paraxial approximation is not used. Because of
Eqs. (4.23)-(4.26), both V(+) and V(-) produce the same in-
tensity distribution across any plane z = const or, which
is the same, they are nondiffracting fields.2' In addition,
each is perfectly coherent.

Let us now construct an ensemble of superpositions of
V` and V`-) with uncorrelated zero-mean coefficients,
say a and a respectively. The cross-spectral density
across any plane z = const is easily found and turns out
to be

W(x,yl; x2,y2)

= (P + M)[AX2 cos(13x1)cos(Qx2 ) + Ay2 CoS(y1)CoS(Y 2)]

- i(P - M)AxAy[cos(f8X1)cos(,fy 2 ) - cos(3y)cos(x 2)],
(4.27)

where

P = (a') 12), M = (la` 12). (4.28)

The corresponding intensity is

I(x,y) = (P + M)[A 2 cos2(f3x) + Ay2 cos2(Qy)]. (4.29)

From Eqs. (4.27) and (4.29) the degree of spatial coher-
ence can be easily evaluated. For the sake of simplicity,
we shall limit discussion to the case P = M and A. = A,2.
We then obtain

1-(X1, Yl; X2, Y2)

CoS(3X1)CoS(X 2 ) + CoS(3y1)CoS(3y 2 )

{[cos 2(/3x,) + COS2(pyl)][CoS 2 (6X2 ) + COS2(8y 2 )]}"12

(4.30)

The superposition field described by Eqs. (4.27), (4.29),
and (4.30) is no longer fully coherent. As an example, let
x = y, = 0. Then, for all pairs ( 2, y2) satisfying

Y2 = X2 + (2n + 1)(/,p), (4.31)

with integer n, the degree of coherence (4.30) vanishes.

5. CONCLUSIONS

We proved that in the one-dimensional case the distribu-
tion of the optical intensity throughout the space fully de-
termines the coherence properties of a field. This
suggests that we could envisage some methods for evalu-
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ation of the spatial correlation function of the field start-
ing from measurements of the optical intensity alone. On
the other hand, we showed that the previous conclusion
does not hold in the two-dimensional case, for which fields
endowed with different coherence properties can produce
the same optical intensity everywhere. In particular, we
found that in some cases a partially coherent field cannot
be distinguished from a fully coherent one as far as the
optical intensity is concerned. This result should be
taken into account when optical beams (e.g., laser beams)
are characterized. In this case one is inclined to think
that the distribution of optical intensity of the beam fully
specifies the spatial properties of the field. Yet, different
coherence features could be exhibited by beams with
equally distributed optical intensity, which would be re-
vealed by diffraction and interference experiments.

The analysis presented in this paper gives only partial
answers to the problem of the mutual constraints between
coherence and the spatial distribution of optical intensity.
However, we hope that the results presented here will
stimulate further study on this theme. We add a final
remark. It is known that certain techniques exist for re-
trieval of the phase of coherent light fields starting from
knowledge of the intensity.2 2

-
2 6 As we saw in Section 4,

in certain cases two different coherent fields can give rise
to the same intensity everywhere. This underlines the
problems of phase ambiguities that may be encountered in
the above-mentioned techniques.

APPENDIX A

Starting from the Fresnel diffraction integral written in
polar coordinates,1 6

V(r,Oz) = -[exp(ikz)] fd V(p, 0, 0)

X exp({i2 [r2 + p2 - 2rp cos(4 - 0)] p(dp,

(Al)

and substituting from Eq. (4.1) above into Eq. (Al),
we obtain

V.()(r 0 ) = Az exp{ [ikz + 

x JfFn(P)[exP(i P2)]pdp

X f2" exp[in4) - i Z- cos(o - 0)]do. (A2)

By introducing the new variable T = 0 - + r/2, we can
write Eq. (A2) as

Vn( (r0, Z) = [exp(in)](-i)n+l'exp [ik (Z + 2 )1] Az L \ 2z/J

f Fn(p,0) [exp (iP2 )]p dp

X 27exp [in - i krp (sin ) d. (A3)

The second integral in Eq. (A3) can be calculated27 and

turns out to be equal to the Bessel function of the first
kind of order n, evaluated in krp/z, times 2ir; hence

i+12r r2
V(+)(rOz) = [exp(in0)(-i) - kexpik + 

JO fFn(P)[exP(izP2 )]Jn(r)pdp.

(A4)

The expression (A4) is clearly of the form (4.2) above, with
Fn(r, z) given by Eq. (4.3).

On the other hand, if we consider the field (4.4) and pro-
ceed in the same manner as before, we obtain the expres-
sion (4.5).
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