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Abstract. By generaliziing the definition of self-Fourier functions recently introduccd by 
Caola, we show that any Fourier transformable function is the linear combination of four 
self-Fourier functions whose explicit form can be found. 

It is well known that certain functions are self-reproducing under Fourier transforma- 
tion. As remarked by Caola in a recent letter [I], the stock examples are the Gaussian 
and the comb functions, so that one might suspect that these are the only functions 
endowed with such a property. Although other examples are sometimes quoted, such 
as l/m and sech(m), the idea may survive that all these functions are somehow 
exceptional. Actually, Caola showed that it is extremely simple to generate functions 
that are self-reproducing under Fourier transformation, i.e. self-Fourier functions 
(SFFS), starting from any pair of Fourier transforms (FTS). The relevance of these results 
for optical applications has been pointed out by Caola [l] and Lohmann [Z]. 

By a slight extension of Caola's definition, we show that not only are SFFS by no 
means exceptional but any Fourier transformable function is in itself the sum of four 
S F F ~ .  Let us denote by ?( U) the IT of any function f ( x )  E L2(R) ,  namely 

+m 

J (u)=(__f(x)  exp(-2rriux)dx. (1) 

Caola defines a sFf as any function f(x) such that 

? ( v ) = f ( v ) .  (2) 

i ( v ,  = af( v )  (3) 

Here, we use the same name in a slightly generalized sense. More precisely, we say 
that f ( x )  is a SFF if it satisfies the following condition 

where U is a constant complex factor. By applying equation (1) twice on the function 
f ( x )  and using equation (3) it is evident that f ( - x ) =  u 2 f ( x ) .  Hence f ( x )  is to be 
symmetric (even or odd) and u2 = +I or -1, depending on the parity of f ( x ) .  Once 
this definition is adopted, a whole set of SFR can be given. This is the set of Hermite- 
Gauss functions, defined as 

( n  =o, 1,2,. . .) (4) 

where H. is the nth Hermite polynomial. It is known [3], although not often quoted, 
that the G, are S F F ~ .  As a matter of fact, the Fourier transformation rule holds: 

( 2 ~ ' ~  
JZ.n! G.( x) = - H. (6 x)  exp( -?rx2) 

&U) = iC"G.(v) ( n = 0 , 1 , 2  ,... ). ( 5 )  
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The Hermite-Gauss functions form an orthonormal set in the L2 space [3]. Accord- 
ingly, any function g(x) belonging to that space can be expanded into a series of the 
form 

m 

g(x)= Z c.G.(x). 
“ = O  

Let us now subdivide the series into four partial series and write 

3 m  

g(X)= 1 %+*mGk+an(X) .  
k = O  m=O 

Denote by g k ( x )  the partial series 

(7) 

m ~. 
g J x j  = Z ck+rmGk+4mixi ( k = U, i ,  i,3 j. (8) 

m=0 

Let us assume for the moment that the above series are convergent. As we shall see 
in a moment, such a hypothesis is unnecessary because the function g k ( x )  can be 
evaluated in a different way. Thanks to equation ( 5 ) ,  the FI of gk is given by 

&(L,) =!-*&(.) ( k  = 0, !, 2,:). (0) 

This proves that g(x) is the sum of four SfFs. Conversely, any function g ( x )  can be 
used to generate four SFFS. Actually, the series expression for g k ( x )  given by equation 
(8) could seldom be used due to the need of summing up the series. We shall prove, 
however, that the functions g k ( x )  can be determined in a simpler way. 

To this end, let us define the following functions: 

g‘+’(x) = flgo(x) + & ( X I  +gz(X) +g3(xjl (10) 

g‘-’(x) = t [ g o ( x ) - g , ( x ) + g z ( x ) - g , ( x ) l .  (11) 

Taking into account equations (7) and (8) as well as the parity properties of the G., 
we see that g‘+’ and g‘-’ are also given by 

g‘+’(x) =fg(x) g‘-’(x) =I 2d-x).  (12) 

Because of the rule ( 5 )  the FIS of equations (IO) and (11) give 

i ( + ) ( v )  =f[gdv) -igl(v) - g d v )  +ig,(v)l 

. - i ! ? ) ( u )  =t[g, (  v)+igl(V) - g 2 ( v )  -igdv)I. 

(13) 

(14) 

By virtue of equation (12), g(+) and i(-’ can also be evaluated as follows: 

i(+)( U) = fg( v) p ( u )  = f i ( - v ) .  (15) 

We now replace the variable U by the variable x in equations (13) and (14) and 
synthesize equations ( l o ) ,  (11) and (13), (14) in the matrix form 
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where, for the sake of brevity, we have dropped the explicit dependence on x. It is 
easily seen that the matrix leading from the right-hand side column vector to the 
left-hand side one is unitary. As a consequence, the inverse matrix coincides with the 
Hermitian transpose. Accordingly, equation (16) can be inverted as follows: 

Equation (17) furnishes the SFFS g, as linear combinations of the functions g'+', g(-), 
i(+) and i(-). These latter, in turn, are immediately evaluated through equations (12) 
and (15) once g(x) and i ( v )  are known. It is easily seen that, except for a numerical 
factor, go(x) has the form suggested by Caola. On the other hand, g,,  g, and g, are 
also SFFS in the generalized sense of equation (3). 

As an example, in figure 1 we show the four self-Fourier functions obtained with 
the generating function 

g ( x ) = ( l + x )  exp(-lxO (18) 

whose FT is given by 

g,(x) ....................................... :k 0 4 . 3 - 2 - 1  0 I 2  3 4 -1 4 -3 ~2 .I 0 I 2  3 4 

4 - 3 - 2 - 1  0 I 2  3 4 4 - 3 3 . ,  0 I 2  3 I 

Figure 1. Self-Fourier functions g,(x), g,(x), pz(x) and g,(x). 
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The explicit form of the functions represented in figure 1 is then 

4 T  
( 1 + 4 ~  2 x 2 ) .] 

g2(x) = f  e-lxl- j 

1 +47r2x2 

4T 
g,(x) = x t e-I.1- 2 2 .] [ ( 1 + 4 m x )  

We finally note that the previous results can be easily extended to the multidimensional 
case. 
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