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It is shown that for paraxiaUy propagating beams of any state of coherence, the width changes along the propagation axis with 
the same law as that of a gaussian beam. A quality factor related to the rate of width change can then be defined. A formula 
expressing this quality factor in terms of the cross spectral density across the beam is derived. 

1. Introduction 

Let us consider the beam from a laser. Very often 
it is assumed that the laser oscillates on the funda- 
mental TEMoo gaussian mode. In this case, the 
"width"  of  the beam at any plane orthogonal to the 
propagation axis can be measured by the spot size, 
whose rate of  change on paraxial propagation is well 
known [ 1 ]. The inherent simplicity of  this approach 
is due to the fact that the fundamental gaussian mode 
(and indeed any higher-order gaussian mode)  has 
the property o f  being shape invariant on paraxial 
propagation. Unfortunately,  many lasers produce 
beams that are only approximately gaussian, if not  
altogether different (e.g., beams from unstable cav- 
ities). This has two main consequences. First, the 
beam loses its shape invariance property so that the 
spot size is no longer well defined. Second, the an- 
gular divergence o f  the beam increases, roughly 
speaking, with respect to the case o f  a truly gaussian 
beam of  equivalent waist width. 

In order to characterize a real laser beam, one has 
first to define its width at a typical cross section. 
Among several possible definitions [ 2 ] it has been 
proposed [3-6  ] to use the one, well familiar from 

quantum mechanics, that identifies the squared width 
with the variance o f  the squared modulus o f  the 
transverse field distribution. We shall recall the exact 
definition in the next section. 

It has been shown [3,5 ] that for any type o f  mode 
the variance changes along the propagation axis ac- 
cording to a law quite similar to the one holding for 
gaussian beams. More precisely, there exists a waist 
cross section o f  the beam where the variance has a 
minimum. On either sides o f  this cross section, the 
variance increases proportionally to the square o f  the 
distance from the waist. The proportionality factor 
accounting for the rate or increase o f  the variance 
can be taken as an indication o f  the beam quality in 
the sense that smaller values o f  the proportionality 
factor denote better-quality beams. For a given waist 
variance, the min imum value o f  the proportionality 
factor is attained by the lowest-order gaussian beam. 
Then, a dimensionless quality factor can be intro- 
duced by comparing the rate o f  increase o f  the var- 
iance o f  a given beam with the corresponding rate of  
a gaussian beam with the same waist width. This is 
the so called M 2 factor, whose precise definition will 
be seen later. 

It has also been shown [3,5] that the M 2 factor 
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can be defined for the beam produced by a laser os- 
cillating on a superposition of modes (e.g. Hermite-  
Gauss or Laguerre-Gauss modes). 

We can now observe that light beams of a more 
general nature than just laser beams are of interest, 
as, for example, beams produced by collimating the 
light emitted by thermal sources, and in fact partially 
coherent beams of several types have received a lot 
of attention in recent years [ 7-21 ]. 

With reference to partially coherent beams of any 
type, two questions arise. First, does the transverse 
variance of the beam increase in paraxial propaga- 
tion with a quadratic law so that a n  M E factor can 
be defined? Second, what is the relationship between 
the increase of variance and the coherence proper- 
ties of the field? 

In this paper, we will show that the answer to the 
first question is in the affirmative. We will further 
derive an expression for the M 2 factor pertaining to 
a partially coherent beam of any state of coherence. 
The main results will be illustrated by means of a 
simple example. 

2 .  P r e l i m i n a r i e s  

The spatial properties of a partially coherent field 
are described, at any temporal frequency, by the cross 
spectral density [22,23 ]. Let us refer to a field prop- 
agating in the half-space z_> 0 of a certain system of 
cartesian coordinates x, y, z. For the sake of sim- 
plicity, we assume that the fields does not depend on 
the y-coordinate. Accordingly, we denote the Wz(x~, 
x2) the cross spectral density between two typical 
points with coordinates Xl and x2 at a typical plane 
z=const. In particular, Wo(Xl, x2) refers to the plane 
z = 0. We assume that the temporal frequency has a 
fixed value and we omit the dependence of the cross 
spectral density on it. The optical intensity across a 
plane z=const.,  say Iz(x), is obtained from W~(xl, 
X2) by letting xt=xz=x,  

I~(x) = W~(x, x ) .  (2.1) 

For sufficiently directional fields, the propagation 
phenomena can be studied in the paraxial approxi- 

mation ~1, where the relationship between Wo and 
Wz is given by ~2 

Wz(Xl,X2)=a~ff Wo(~l,~2) 
×exp{~ria[ (xl -~1)  2 -  (x2-~2)2]} d~l d~2. 

(2.2) 

Here and in the following, infinite limits of integra- 
tion are assumed. Furthermore, a is given by 

a= 1/2z, (2.3) 

where cr is the wavelength corresponding to the fixed 
temporal frequency. On inserting from eq. (2.2) into 
eq. (2.1) we obtain the optical intensity across the 
plane z=const.,  

Iz(X)=O~ Wo(~1, ~2) 
×exp{xiot[~ 2 - ~ 2 - 2 x ( ~ ,  -~2)1} d~ d~2. (2.4) 

Let us introduce the two-dimensional Fourier trans- 
form of W~(x~, x2), say I.Vz(p~, P2), through the usual 
formula 

I'TV'z(pl,P2)= f ~ Wz(Xl,X2) 
×exp[  --2rd(plXl +p2xz) ] dx~ dx2. (2.5) 

Using the convolution theorem for the Fourier trans- 
form, we easily obtain the following relation: 

I~z(pl, p2) 

= I ~ o ( p , , p 2 ) e x p [ - ( x i / a ) ( p Z - p 2 ) l  . (2.6) 

As is well known [25], the optical intensity distri- 
bution in the far field is proportional to the anti-di- 
agonal elements of I~o or, because of eq. (2.6), of 
I~z. More precisely, the quantity J ¢ ~) (p) defined as 
follows 

J ~ ) ( p )  = I~o(p, - p ) =  ff'z(P, - P ) ,  (2.7) 

is proportional to the radiant intensity in a direction 

~ Conditions under which paraxial propagation can be assumed 
are discussed in ref. [24]. 

.2 The sign to be put in front of  the exponent in the integral o f  
eq. (2 .2)  is plus or minus depending on whether one defines 
the mutual coherence function in its original form [ 221 or in 
its complex conjugate form [23] .  As far as classical (i.e. non- 
quantum) treatments are concerned, the two definitions are 
equivalent. Here, we use the first one. 
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specified by p. We are not interested in the propor- 
tionality factor because we are going to work with 
normalized quantities. Accordingly, we shall loosely 
refer to j t~o)(p)  as the intensity in the far field. 

In defining the width of the beam we shall need 
the following normalization factor: 

N=f Io(x) dr. (2.8) 

This factor can be thought of as the total power pass- 
ing through the plane z = 0  (at the fixed temporal 
frequency). It is easy to prove the physically obvious 
fact that such a power remains the same across any 
plane z=consc ,  either in the near or in the far field. 
In other words, we have the identities 

N=f I~(x) dx= f J(~)(p)dp, (2.9) 

for any choice of z. 
We now define the width Axz of the beam at any 

(finite) value of  z as well as the far-field width Ap 
through the formulas 

1 f Ax2~ = ~ (x-gz)2Iz(x) dr, (2.10) 

AP2= Ai" (p_p)2j(oO)(p) dp,  (2.11) 

where the central values & and p are defined as 
follows: 

if &= ~ xI~(x) dr, (2.12) 

,O= N : pJ<°°)(p) dp. (2.13) 

3. The  change of width of  the beam 

In this section we inquire about the variation of  
Ax. with respect to z. First of  all, we observe that go 
can be made to vanish by a suitable choice of  the or- 
igin of  the x-axis. Similarly, p can also be made to 
vanish by suitably orienting the z-axis. On assuming 
2?0=,0=0, it can be proved (appendix A) that 

g z = 0 ,  (3.1) 

for any value of z. Accordingly, we shall use eqs. 

(2.10) and (2.11) in the simplified form 

2 1 6x~ =~ I x2L(x) dr' 

Apz= l f pzJ'°~)(p) dp. 

(3.2) 

(3.3) 

It is not difficult to show (appendix B) that the fol- 
lowing relation holds: 

f x2I~(x) dx 

l f(.O2~-~(pPo--P2) ) dp, (3.4) 
-- 47[ 2 k, P2 /p,p 

where the double index p, p means that we let 
Pl =P2 =P after taking the second derivative of  ff'z(Pl, 
-P2). Using eq. (2.6) we obtain 

Opt Op2 ]p,p--k. Opl Op2 .,p 

4rtZp 2 2~ (OIVo(Pl,-p2)) 
+ - - ~  Wo(p, - P ) +  -~ - -P \  Op 1 " pP 

27ri (Ol~o(p,,-p2)) 
- - -~-P\  -OP-z ,p,p" ( 3 . 5 )  

It can be shown (appendix B) that 

(3.6) 

where the asterisk denotes the complex conjugate. 
On inserting from eqs. (3.4), (3.5) and (3.6) into 
eq. (3.2) we have 

= 1 f 
4~ZN J ~, Op, 0,o2 ,/t,,p dp 

1 C 2if;, + J p o(p, -p )  dp 

1 " [-f [OlYg°(P"-P2)) -@7 ~ l m l ]  dp , (3.7) 
p , p  ..a 

where Im stands for imaginary part. Taking into ac- 
count eqs. (3.4) and (3.2), written with z=0 ,  as well 
as eqs. (2.7) and (3.3), we see that eq. (3.7) can be 
written in the form 
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1 2 AXz==~o~+ 7~xp 

\ Op, "_p,~ _," 

We now recall eq. (2.3) and we define the quantity 

1 im[fp(OlTVo(Pl , - -p2))dp 1 
( =  2~z2N AP 2 \ ~ ]  ".'p,p ...a" 

(3.9) 

Then, eq. (3.8) can be transformed into the formula 

Ax2 =Ax~ +2 2 Ap 2 ( z - ( )  2 , (3.10) 

where 

Ax~ = Ax 2 - 2  2 Ap 2 ~2. (3.1 1 ) 

Eq. (3.10) is the main result of this section. It proves 
that for any partially coherent beam that can be de- 
scribed in the paraxial approximation the squared 
width increases quadratically with respect to the dis- 
tance from a certain waist plane z=  (, where the width 
has the minimum value Axe. The location of the waist 
plane is given by eq. (3.9) whereas the minimum 
width is obtained from eq. (3.11 ). 

Another useful result that can be proved without 
difficulty (appendix C) is the following. If in the 
plane z = 0  the cross spectral density is purely real 
then (=0,  i.e., the plane z = 0  coincides with the waist 
plane. 

4. The M2 factor 

Let us consider a spatially coherent TEMoo gaus- 
sian beam. The optical intensity distribution that it 
produces at any plane z=const,  is of the form 

I~(x) = IMz exp ( - 2x2/w 2) , (4.1) 

where Wz is the usual spot size [ 1 ] and IMz is the 
maximum value attained by Iz(x). On inserting from 
eq. (4.1) into eq. (3.2) we easily find 

2 Axz =w2/4. (4.2) 

The well-known law for the variation of  the spot size 
[ 1 ] can then be expressed by means of the width and 
gives 

2 2 
Ax2 = Ax~ + 167r 2 ~ A x  ~ (z -~)  2 , (4.3) 

where z=  ( is the plane of the waist of the gaussian 
beam. We can now recast eq. (3.10) in a form anal- 
ogous to eq. (4.3). To this aim, we introduce the so 
called M 2 factor [3-5 ], 

M2=4n  Axe Ap. (4.4) 

Using this definition, eq. (3. l 0) can be written 

2 2 
2 

~X;z----- A x ~ + M  4 16;¢ 2 ~ ( z - ~ )  2 . ( 4 . 5 )  

This equation holds for beams of any state of co- 
herence, provided only that the paraxial approxi- 
mation can be used. The comparison between eqs. 
(4.3) and (4.5) shows that for a spatially coherent, 
lowest-order gaussian mode the g 2 factor is unity. 
As a matter of fact, this is the case in which the M 2 

factor has the minimum value among all possible 
spatially coherent distributions [ 3-5 ]. This could be 
expected from the analogy with similarly defined 
quantities of wave mechanics or indeed with similar 
considerations relating to the concept of coherence 
time [22 ]. For a laser oscillating on a superposition 
of gaussian modes of any order, the g 2 factor can 
also be evaluated. 

For a partially coherent beam of any origin, the 
M 2 factor (4.4) can be evaluated by first computing 

through eq. (3.9) and then using eq. (3.2) with 
z=  ~ and eq. (3.3). To bring into evidence the role 
played by the coherence characteristics it is useful to 
give eq. (3.3) a different form. The following equal- 
ity is easily proved (appendix B): 

• p2j~)(p) dp 

1 f(OZWz(x,,xz))~,xdx ' - ~ x ~ x 2  
- 4~2 (4.6) 

for any value ofz. In particular, we let z=  ~. With the 
aid ofeqs. (2.9) and (4.6), the insertion ofeqs. (3.2) 
and (3.3) into eq. (4.4) gives 
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' 

2 1/2 

~k OXI OX2 Jx,x J " 

(4.7) 

Eq. (4.7) is the main result of  this section. It shows 
how the M 2 factor depends on the coherence prop- 
erties of the beam across the waist plane. As a par- 
ticular case, the field can be coherent. The cross 
spectral density is then of the form [26] 

Wc(x,, x2) = Vc(xl ) V~(x2) , (4.8) 

where V¢(x) is the coherent field distribution across 
the waist plane. Eq. (4.6) then reduces to 

1 
p2j~O(p) dp=  ~Snz f IdVc(x)/dxl2clx, (4.9) 

and eq. (4.7) is to be modified accordingly. 

5. An example 

Let us consider a partially coherent beam whose 
cross spectral density in the plane z = 0  is given by 

Wo(x,,x2) 
xi+x ). 

=Ioexp w2 } s,nc[ - - - ~ } ,  (5.1) 

where Io, Wo and L are constants and sinc(t) stands 
for sin(nt)/Ort). The plane z = 0  can be though of 
as a secondary Schell-model source [27 ] with a gaus- 
sian profile of  optical intensity and a sinc-shaped de- 
gree of  spectral coherence. Such a source could be 
easily synthesized starting from a primary spatially 
incoherent source in the form of a slit. By virtue of  
the van Cittert-Zernike theorem [ 22 ], the degree of 
spectral coherence in the far field of  the slit source 
is a sinc function. Then, letting the far-field radia- 
tion pass through a gaussian transparency produces 
the required secondary source. 

Accordingly to a result given in section 3, the waist 
plane is the plane z = 0  itself, because the cross spec- 
tral density (5.1) is real. Letting ( = 0  in eq. (4.7) we 
can easily evaluate the M 2 factor pertaining to the 
beam described by eq. (5.1). The result is as follows: 

M 2 = 4 1  + 7t2w2/3L 2 . (5.2) 

It is seen that the M 2 factor is an increasing func- 
tion of the ratio wo/L, i.e., of the ratio between the 
spot size and the parameter L, whose physical mean- 
ing is that of a transverse coherence length. I f  L is 
much greater than Wo, the source is highly coherent 
and the M 2 factor is near to one just as in the case 
of  an ideal gaussian beam. On the other hand, if L 
is of  the order of wo or smaller than that, the reduced 
coherence gives rise to an increase of  M 2. 

Appendix A 

Let us derive the law of variation of X~ with respect 
to z. First, we note that eq. (2.12) can be written in 
the form 

Xz= ~c ~ [x, W~(x,,x2) L,xdx, (A1) 

where the double index x, x means that we set Xl = 
x2=x. We now take the derivative of  both sides of  
eq. (2.5) with respect to Pl and then we make a 
Fourier inversion. This gives 

1 ffoVG(p,,p2) x, Wz(x,, x2)  = - ~ Opl 

Xexp[2~ti(p~x~ +p2x2) ] dp~ dp2. (A.2) 

On substituting from (A.2) into (A.1), we obtain 

1 ffOffG(Pl'p2) dptdp2 
x~ = -  2~i----N 0pl 

X ~ exp[27tix(pt +P2) ] dx .  (A.3) 

The last integral equals the Dirac function J(p~ +P2). 
It follows at once that eq. (A.3) reduces to 

l f(OfV~(p' '-p2)-) dp, (A.4) 
X~ = -  2rd---N 0pl .p,p 

where the double index p, p means that we set p~ = 
P2 =P after taking the derivative. On using eq. (2.6), 
we have 
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( a@z(P,, -p2) 

aP, ) P.P 

respect to p, and p2 and set p1 =p2=p. The resulting 
formulas are 

> P.P 

- + @i(p, -p). (A.5) 

Therefore, eq. (A.4) becomes 

1 
&=--ZxiN 

a@o(P,, -Pz) 

aP* > 
dp 

P.P 

+--& P@‘o(P, -P) dp . 
I 

(A.6) 

Taking into account eqs. (2.3) and (2.13) as well as 
eq. (A.4) written for z=O, we see that eq. (A.6) re- 

duces to 

Xz =x0 +Izp. (A.7) 

This is the required law of variation for X,. It follows 

at once that eq. (3.1) holds when X0=+0. 

Appendix B 

Here, we shall prove eqs. (3.4), (3.6) and (4.6). 
We first write eq. (2.5) with p2 replaced by -p2. 
Then, on taking the second derivative of m=(p,, -p2) 

with respect to p, and p2 we obtain 

a2R(p,, -p2) =47c2 

ap, ap2 ss 
x,x2~z(x,,x2) 

Xexp[-27ti(p,x,-p2x2)ldX,dX2. (B.1) 

On letting p, =p2=p and on integrating with respect 
to p, we have 

K a2R(p1, -p2) 

ap, ap2 > 
dp 

p,p 

=4w2 
JI XlX2~Z(XI,X2) b, a2 

x 
s 

exp[ -2zip(x, -x2)] dp. (B.2) 

Eq. (3.4) then follows at once because the last in- 
tegral equals 6(x, -x2). 

In order to prove eq. (3.6) we start again from eq. 
(2.5) written at z=O and with p2 replaced by -p2. 
We then take the derivatives of po(p,, -p2) with 
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Xexp[ -27rip(x, -x2)] dx, dx2, (B.3) 

Xexp[ -2nip(x, -x2)] dx, dx2. (B.4) 

Interchanging the variables x, and x2 in eq. (B.4), 
we have 

xexp[2Mx, --x2)1 dx, dx2, (B.5) 

where the asterisk denotes the complex conjugate and 
where use has been made of the well-known her- 
miticity property of the cross spectral density, namely 
I%‘,( x2, x, ) = IV; (x, , x2 ). The comparison between 
eqs. (B.3) and (B.5) proves eq. (3.6). 

Finally, eq. (4.6) can be derived in much the same 

way as eq. (3.4). 

Appendix C 

We want to prove that z=O if Wo(x,, x2) is real. 
To this aim, we shall prove the following equality: 

J( p a@o(P,, -p2) dp 

ap, > P.P 

= x SC aw,(x,, x2) dx 

ax2 > x,x * 

(C.1) 

Observe that the left-hand side of eq. (C. 1) can be 
written 

J( p a@o(p,Y -p2) 

ap, 
dr, 

P.P 

= a~z@o(~,i -PZ 

ap, 

(C.2) 

On expressing W,(x,, x2) through its Fourier trans- 
form, we have 
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~'ro(Xl' X2)= ff l~o(Pt,--P2) References 

×exp[2zd(p~xt  -p2x2) ] dp~ dP2, (C.3)  

where P2 has been replaced by -P2.  Let us take the 
derivative of  both sides of  eq. (A.3) with respect to 
x2. This gives 

OWo(xl,x2) 
__2 i 

0x2 

×exp[2rd(p~xt  -P2x2) ] dp~ dp2, (C.4) 

so that by Fourier  inversion we obtain 

p21"~o(p,, --p2)_~ -- -~-~ f ~ OW°(Xt' X2) 
i)X2 

×exp[--2rt i (p~x~ --P2X2) ] d.xl d.x2. (C.5) 

On differentiating with respect to p~ and setting 
P~ =P2 =P,  we have 

(° ) 
0--~ p2 g o ( p , ,  - p 2 )  ~,p = x,  0x2 

× e x p [  -2nip(x1 - X a )  ] dx~ dxa.  (C.6) 

Integration of both sides of eq. (A.6) with respect to 
p leads to 

I( 0 ) 0--~[ P2 ff'o(P~, --P2) dp 
P,P 

x(O o  
x , g  

where again the integral expression of  the Dirac 
funct ion c~(xt-x2)  has been used. By virtue of eq. 
(C.2),  we see that eq. (C.7) proves eq. (C.1).  It fol- 
lows at once from eq. (C.1) that the right-hand side 

ofeq.  (3.9) vanishes if  Wo(xl, x2) is real. Hence, in 
this case we have ( = 0 .  
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