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Optical sources whose cross-spectral density can be expanded into spatially sinusoidal modes are investigated. It is shown that 
the corresponding cross-spectral density can be constructed by means of a function of a single variable, called the mother function. 
The coherence properties of the source are then derived from the mother function characteristics. 

1. Introduction 

The Wolf's theory of partial coherence in the space- 
frequency domain [ 1,2 ] is now a well established tool 
for characterizing the coherence properties of an op- 
tical source [3-5].  The theory is based on the rep- 
resentation of the cross-spectral density through a 
superposition of coherent source modes. However, 
as the integral equations defining the modes are not 
always solvable in a closed form, the modes are ex- 
plicitly known only for a relatively small number of  
cases and they are usually expressed through special 
functions, like Bessel [6] or Hermite-Gauss [7,8] 
functions. In addition, the eigenfunctions (i.e. the 
modes) and the eigenvalues (i.e. the weights of the 
modes in the superposition) of the integral equation 
are to be evaluated for each particular cross-spectral 
density. Obviously enough, once the modes have been 
found, a whole class of partially coherent sources 
possessing the same modes could in principle be 
found by simply altering the eigenvalues. However, 
except for special cases [ 9 ], one is not able to ex- 
press the cross-spectral density of these other sources 
in a closed form. 

In this paper, we investigate the existence of 
sources whose cross-spectral density can be ex- 

panded in the particularly simple form of spatially 
sinusoidal modes. The reason for this investigation 
is twofold. On one hand, the elementary character of 
sinusoidal functions should offer a class of cases in 
which the mathematics of the modal expansion is as 
simple as possible. This, in turn, should be of help 
for a full appreciation of the. role played by the modes 
and by their weights in determining the coherence 
properties of  a source. On the other hand, a super- 
position of sinusoidal modes can be realized exper- 
imentally and this is of  interest for the synthesis of 
partially coherent fields [ 10,11 ]. 

We demonstrate that sources with spatially sinu- 
soidal modes do exist. We find that their cross-spec- 
tral density has the peculiar property of  being com- 
pletely determined by one function of a single (real) 
variable, that will be called the mother function. 
Among commonly used model sources, such a prop- 
erty is shared only by strictly homogeneous sources 
whose cross-spectral density is shift-invariant. As we 
shall see, this property is at the root of  the simple 
character of  the modal expansion of the sources un- 
der investigation, because it traces back the model 
expansion to the Fourier series (of a single vari- 
able). The class of possible mother functions is eas- 
ily found. Depending on the choice of  the mother 
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function, sources with largely different coherence 
properties can be obtained, ranging from the coher- 
ent to the incoherent limit and including cases with 
peculiar coherence features such as specular and an- 
tispecular cross-spectral densities. 

sources whose modes are sinusoidal functions sat- 
isfying eqs. (2.4). 

3. Solution of the problem 

2. Statement of the problem 

Let us consider a partially coherent one-dimen- 
sional source, symmetrically located around the or- 
igin of a coordinate axis (say the x-axis). We denote 
by L the finite extension of the source and by W(xt, 
x2) its cross-spectral density function, where x~ and 
x2 are the coordinates of two typical points of the 
source. The temporal frequency is assumed to be 
fixed and the dependence on it of W is not explicitly 
shown. Under very general conditions, the following 
expansion holds [ 1 ] 

W(x~ ,x2 )=  Y~ ~,. ¢'.(x~) q~*(x2) , 
n 

( - L / 2  <~ xl, x2 <~L/2) , (2.1) 

where the asterisk denotes the complex conjugate. In 
eq. (2.1), the modes q~, are orthonormal inside the 
interval ( - L / 2 ,  L/2) and the eigenvalues y, are 
nonnegative. Throughout this paper, the summation 
index n is assumed to be an integer number running 
from one to infinity. 

Starting from W(Xl, x2), the optical intensity dis- 
tribution l (x)  [ 12 ] can be immediately written as 

l ( x )  = W(x,  x )  = ~ ),. [ q ) . (x )  12 . (2 .2)  

We make the physically plausible hypothesis of zero 
intensity at the edges of the source, viz. 

I(+_L/2) = ~ 7, ]q),(+_L/2) 12=0, (2.3) 

where upper and lower signs have to be taken 
simultaneously. 

As a consequence, because of the nonnegativeness 
of the 7,'s, every ~ ,  is required to satisfy the follow- 
ing conditions 

~ , ( + L / 2 )  = 0 .  (2.4) 

The aim of this paper is the characterization of the 

For convenience, let us consider the following di- 
mensionless coordinate 

y = l t ( x / L + l / 2 ) .  (3.1) 

With reference to the y-axis, the source is included 
inside the interval (0, zt) and its cross-spectral den- 
sity, say Wy(Yl, Y2), can be written as 

Wy(y~, Y2) = W[L(y~/rt- 1/2),  L(y2 /n -  1/2) ] ,  

(0~<yl, Y2 <~ re). (3.2) 

The modal expansion (2.1) can now be written in 
the form 

W y ( Y l , Y 2 )  -~ E 7n ~tn(Yl)  ~*n(Y2) , ( 3 . 3 )  
n 

where 

~P,(y) = ~ , [ L ( y / t t -  1/2) ] .  (3.4) 

Because of eqs. (2.4), every ~,  is required to sat- 
isfy the following conditions 

~ , (0 )  = ~,(rt)  = 0 .  (3.5) 

Let us consider the following sinusoidal functions 
which vanish at the edges of the interval (0, rt) 

f , (y )  = C ,  s in (ny) ,  (3.6) 

where the normalization factors C, are given by 

Cn-~ ( 2 / l t )  1/2 . (3.7) 

The functions defined by (3.6) constitute an or- 
thonormal set over the interval (0, rt) and, conse- 
quently, they can be thought of as a set of ~, 's in eq. 
(3.3). The resulting series can be considered as the 
modal expansion of a cross-spectral density, under 
the only condition that the series converges. 

In order to prove that sources corresponding to this 
kind of  cross-spectral density exist, let us write ex- 
plicitly the kernels corresponding to the sinusoidal 
modes (3.6) as 

2 
W y ( y l ,  Y2) = ~ ~ 7. sin(nyl ) sin(ny2) , (3.8) 
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where the coefficients y~ are nonnegative. By making 
use of elementary trigonometric formulas, eq. (3.8) 
can also be written 

Wy(y~, Y2) =M(yl  -Y2) -M(y l  + Y 2 )  , (3.9) 

where 

1 
M(t) = ~ ~ rncos (n t )+G.  (3.10) 

In eq. (3.10), G is an arbitrary constant. 
We see from eq. (3.9) that the convergence of eq. 

(3.8) is assured by that ofeq.  (3.10). This, in turn, 
can be assessed through the convergence criteria for 
a Fourier series. 

In conclusion, the existence of sources whose cross- 
spectral density has the modal expansion given by 
eq. (3.8) is directly connected with the existence of 
functions M as defined by eq. (3.10). This has to be 
consistent with the only constraint of nonnegative- 
ness for the coefficients 7n. Such a constraint can be 
easily satisfied. In fact, every function M that can be 
expressed as the autocorrelation of another function, 
say m, falls within the category of functions that we 
are looking for. Indeed, in this case, the Fourier coef- 
ficients of M are nonnegative being proportional to 
the squared moduli of the Fourier coefficients of m. 

Once M is fixed, the cross-spectral density is com- 
pletely specified by eq. (3.9). In this sense, M can 
be called a mother function for W r Obviously, the 
opposite is also true. Indeed, let us consider a cross- 
spectral density Wy for which an expansion of the 
form of eq. (3.8) is known to hold. It is immediately 
verified that the corresponding mother function is 
completely determined by the equation 

M(t,  = M ( 0 )  - Wy(t/2, t/2) . (3.11) 

It is not difficult to show that M(0)  is a finite 
quantity so that the convergence of M(t )  is proved 
byeq.  (3.11). 

4. Source characteristics 

Let us now examine the characteristics of the 
sources belonging to the class specified in the pre- 
vious section. As far as the intensity distribution 
across the source is concerned, we note that eq. 
(3.11 ) implies that 

I(y) = M ( 0 )  - M ( 2 y ) .  (4.1 ) 

From eq. (4.1), we see that I (y)  is obtained by 
subtracting the compressed version M(2y)  of M(y)  
from its maximum value M(0) .  As a consequence, 
the mother function can be interpreted as a comple- 
mentary, expanded version of the intensity profile 
and, therefore, it can be used to control the intensity 
distribution. 

For later use, we note that, by making use of eq. 
(3.10), eq. (4.1) can be explicitly written as 

1 1 
I(y) = -~ ~ 7n - -~ ~ 7~ cos(2ny) .  (4.2) 

We further note that, by making use of eqs. (3.9) 
and (4.1 ), the cross-spectral density function IVy can 
be expressed as a function of the intensity distri- 
bution I through the relation 

Wr(yl,Y2 ) = I ( ~ ) - I ( ~ ) .  (4.3, 

The peculiar result expressed by eq. (4.3) is a di- 
rect consequence of the correspondence established 
between the cross-spectral density function W e and 
the single-variable mother function M. 

The degree of spectral coherence [ 12 ] can be de- 
duced from eqs. (3.9) and (4.1) as 

Wy (Yl, Y2 ) 

M(y~ - Y 2 ) - M ( y ~  +Y2) (4.4) 
= x /M(0)  - M ( 2 y l  )x /M(0)  - n ( 2 y 2 )  " 

It is interesting to note that, when M(t) is sub- 
stantially different from zero only for t near to zero 
(or near to integer multiples of 2n), a source region 
exists where the cross-spectral density function is ap- 
proximately shift-invariant. In fact, it is seen from 
eq. (3.9) that in this case the following approximate 
relation holds 

Wy(yt, Y2) ~-M(yl -Y2) ,  (4.5) 

provided that we consider two source points which 
are not both close to the same edge. In addition, eq. 
(4.1) shows that, in the same approximation, the in- 
tensity distribution is almost uniform across the 
greater part of the source area (except near the 
edges). As a consequence, for source points far from 
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the edges, the degree of spectral coherence is ap- 
proximately shift-invariant. Because of the small 
width of the mother function, this is the limit case 
of a coherence area small with respect to the source 
area. Obviously, the opposite completely coherent 
limit corresponds to a source expansion consisting of 
a single mode [ 1 ]. 

Finally, the above discussed sources can be inves- 
tigated regarding their specularity properties [ 13 ]. 
To do this, let us consider mother functions Mwhose 
Fourier expansion (3.10) contains only terms with 
odd indices, viz. 

1 
r2~-1 cos[ ( 2 n -  1 ) t ] .  (4.6) M ( t ) =  rt 

It is immediately seen that the function M as defined 
by eq. (4.6) is antisymmetric with respect to the 
center of the source interval (0, rt), i.e. that the fol- 
lowing relation holds 

M ( n - t )  = - M ( t )  . (4.7) 

Let us now consider the cross-spectral density (3.9) 
and let us calculate it in correspondence to the pair 
of symmetric points y~ and rt-y~, for a given Y2- Eqs. 
(3.9) and (4.7) imply that 

wy(~-y~, y2) 

= M [ n -  (y~ +Y2) ] - M [ n -  (y~ -Y2) ] 

= W y ( y , ,  Y2), (4.8) 

so that we conclude that the cross-spectral density 
function is specular. This result agrees with that ob- 
tained in ref. [ 13] concerning the role of  the even 
modes in the modal expansion of a specular cross- 
spectral density function. 

Opposite results are obtained if we consider mother 
functions M whose Fourier expansion (3.10) con- 
tains only terms with even indices, viz. 

M ( t ) =  1 y2,cos(2nt) .  (4.9) 

In this case, we have 

M ( r t - t )  = M ( t )  . (4.10) 

By making use of eq. (4.10), we obtain 

W r ( ~ t - Y l ,  Y2) 

= M [ ~ r -  (y~ +Y2)] - M [ r t -  (y~ -Y2)]  

= - W y ( y l ,  Y2). (4.11 ) 

A cross-spectral density function satisfying eq. (4.11 ) 
can be called antispecular. 

The above outlined source characteristics will be 
evidentiated in the next section, with reference to a 
specific example of  mother function. 

5. Example 

Let us consider the case in which the 7n coeffi- 
cients of eq. (3.1 O) assume the explicit form 

~ n = n q  ~ , (5.1) 

where q is a positive parameter less than one. 
By taking into account eq. (5.1), the expansion 

given by eq. (3.10) can be written in the following 
closed form [ 14 ] 

M ( t ) =  ~. q ~ c o s ( n t ) + G  
n 

q c o s ( t ) - - q  2 
= l + q 2 _ 2 q c o s ( t  ) + G .  (5.2) 

It is easy to recognize that the function M as given 
by eq. (5.2) has the form of the transmitted inten- 
sity in a Fabry-Perot interferometer [ 15 ]. As it is well 
known, by increasing q, the M-values become very 
small except in the immediate neighbourhood of the 
limits of  the interval (0, 2n). As a consequence, for 
two source points which are not both close to the 
same edge, eq. (4.5) holds and the cross-spectral 
density function is approximately shift-invariant. 

The intensity distribution is given by eq. (4.2). 
This, by making use of eq. (5.1), becomes 

I ( y )  = ~. q " -  ~, q"cos (ny )  
n n 

q q c o s ( y ) - - q  2 
-- 1 --~q 1 + q 2 - 2 q c o s ( y )  " (5.3) 

In fig. 1, the intensity distribution I ( y ) ,  as given 
by eq. (5.3), is drawn as a function of y, in corre- 
spondence to several values ofq. It can be easily seen 
from fig. 1 that, by increasing q, the intensity dis- 
tribution becomes approximately uniform in the 
central part of the source area. 
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Fig. 1. Intensity distribution ( as represented by eq. ( 5.3 ) ) drawn ~ (b) 
as a function of the coordinate y in correspondence to (a) q = 0.50, ~ (y,, Y2 
(b) q=0.80, (c) q=0.86 and (d) q=0.90. 1.o' 

The degree of  spectral coherence is given by eq. 0.s 
(4.4).  By taking into account  eqs. (5.2)  and (5.3),  o.6. 
eq. (4.4)  can be writ ten 

_ (  qc°s(y'-Y2)---q 2 0 . ,  

/~(Y~, Y2) - \1  + q 2 _ 2 q  cos (y~ -Y2)  o.~ 

qcos (y l  + y 2 ) - q  2 '~ . . . .  
- 1 + q 2 - 2 q  cos(y1 +Y2 ) ]  0.5 Lo L5 2 

X ( 1  q q _  qcos (2y l )_q  2 ~-1/2 
-- l + q2-- 2q cos( 2yl ) ] 

q q c o s ( 2 y 2 ) _ q  2 ~--1/2 

X l - - q - -  l+q2--2qcos(2y2)] 
(5.4)  

In fig. 2, the degree of  spectral coherence is drawn 
as a function o fy l ,  in correspondence to several val- 
ues of  Y2, for q=0 .1  (fig. 2a) and q = 0 . 9  (fig. 2b) .  
As it can be seen, as a consequence of  the uniformity 
of  the intensity distribution, the shift-invariance 
property exhibited by the cross-spectral density holds 
also for the degree of  spectral coherence, within the 
same limits. On the contrary, for y2-values near  the 
source edges, due to the constraint  o f  eq. (2.3) ,  the 
intensity vanishes and the shift-invariance proper ty  
is destroyed. 

For  what  specularity and antispecularity are con- 
cerned, only terms with indices of  well defined par- 
ity have to be considered in the mothe r  function 
Fourier expansion. When only the Fourier terms with 
odd indices are considered, the mothe r  function 
becomes 

1) 
2~5 3 Yl 

Fig. 2. Degree of spectral coherence (as represented by eq. (5.4)) 
drawn as a function ofyl for q=0.1 (fig. 2a) and q=0.9 (fig. 
2b), in correspondence to (a) y2ffi0.1, (b) y2=0.7, (c) y2= 1.5, 
(d) y2=2.3 and (e) y2=3.0. 

M(t)  = ~ q 2 n - l c o s [  ( 2 n -  1 )t]  
n 

q ( 1 - - q  2) COS(t) 
= ( 1 + q 2 ) 2 " 4 q 2 c o s 2 ( / )  " (5 .5 )  

The corresponding symmetr ic  intensity distribution 
is shown in fig. 3a, for q=0 .9 .  The specular degree 
o f  spectral coherence is drawn in fig. 3b, as a func- 
t ion o f y l ,  in correspondence to q = 0 . 9  and y2=0.7  
/t. 

Finally, when only the Fourier  terms with even in- 
dices are considered, the mother  function becomes 

M(t)  = ~, q2ncos(2nt) 
n 

2q2cos2(t) _ q 2 (  1 +q2)  (5.6)  
= (1 -I-q 2) 2 -4q2cos2( t )  " 

The corresponding symmetr ic  intensity distribution 
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Fig. 3. Symmetric intensity distribution (a) and specular degree 
of spectral coherence (b) corresponding to a mother function 
Fourier expansion containing only terms with odd indices, with 
q=0.9 and y2=0.7 g. 
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Fig. 4. Symmetric intensity distribution (a) and antispecular de- 
gree of spectral coherence (b) corresponding to a mother func- 
tion Fourier expansion containing only terms with even indices, 
with q=0.9 and y2=0.7 ~. 

is shown in fig. 4a, for q=0.9 .  The antispecular de- 
gree o f  spectral coherence is drawn in fig. 4b, as a 
function of  Yl, in correspondence to q = 0 . 9  and 
y2=0.7  ft. 

6. Conclusions 

In this paper, we have demonstrated the existence 
o f  sources whose cross-spectral density can be ex- 
panded in spatially sinusoidal modes. For such 
sources, the cross-spectral density as well as the in- 
tensity distribution and the degree o f  spectral co- 
herence can be constructed starting from even, pe- 
riodic mother  functions with nonnegative Fourier 
coefficients. In the general case, neither the cross- 
spectral density nor the degree of  spectral coherence 
are shift-invariant. However, we have shown that for 

a suitable choice o f  the mother  function the shift-in- 
variance property can be obtained across the greater 
part o f  the source area. Within the same limits, the 
intensity distribution results to be approximately 
uniform. 

We have also shown that, when only terms with 
indices o f  well defined parity are considered in the 
mother  function Fourier expansion, the resulting 
cross-spectral density functions exhibit peculiar be- 
haviours regarding their specularity properties. 

The whole class o f  autocorrelation functions can 
act as mother  functions. As a simple example, we ex- 
plicitly considered the case o f  a Fourier series whose 
coefficients decrease with a geometrical progression 
law. By slowing down the decreasing law of  the coef- 
ficients, the cross-spectral density becomes progres- 
sively shift-invariant and the intensity distribution 
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becomes approximately uniform across the greater 
part of  the source area. 

The mode structure based on spatially sinusoidal 
functions directly leads to an easy synthetic source 
implementat ion.  This can be simply obtained by su- 
perposing many independent  sinusoidal distribu- 
tions. Furthermore,  the weights of  the superposition 
can be adjusted in such a way that a predetermined 
degree of shift-invariance and uniformity  can also be 
obtained. 

We l imited ourselves to sources whose intensity 
vanishes at the edges and this led to the considera- 
t ion of sine functions. However, also cosines could 
be used in the modal  expansion of  the cross-spectral 
density. In  this case, eq. (2.4) is no longer valid and  
also sources with nonvanishing intensities at the edges 
can be represented. 

For the sake of  simplicity, one-dimensional  sources 
have been considered throughout this paper. How- 
ever, all the considerations we developed can be ex- 
tended to the two-dimensional  case. 
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