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We investigate conditions ensuring spectral invariance on paraxial propagation of  the radiation field produced by a partially 
coherent source. We find a sufficient condition that reduces to Wolf 's scaling law in the case of  quasi homogeneous sources. 

1. Introduction 

Spectrum variations in the course of  propagation of partially coherent fields have been known for some time 
[ 1-3 ]. Not long ago, Wolf [ 4 ] found a condition, namely the scaling law, ensuring that the normalized spec- 
trum in the far field of  a quasi homogeneous source does not depend on the observation point. Wolf also showed 
that violations of the scaling law have far reaching consequences [5,6] some of  whom have been subsequently 
verified experimentally [ 7-  I 0 ]. In a recent paper [ 11 ], it has been shown that for quasi homogeneous sources 
possessing the same power spectrum at any source point the scaling law is sufficient to guarantee spectral in- 
variance not only in the far field but also in the near field whenever paraxial propagation can be assumed. 

In this paper, we investigate whether spectral invariance in the course of  paraxial propagation can be ob- 
tained for sources not necessarily described by the quasi homogeneous model. We find a simple sufficient con- 
dition that guarantees spectral invariance. When applied to quasi homogeneous sources, such a condition re- 
duces to the scaling law. However, it holds true as well for other classes of  sources that we shall illustrate through 
examples. 

2. Paraxial propagation of the cross spectral density 

Let us consider a planar, partially coherent secondary source. We denote by Wo(p~, P2, k) the cross spectral 
density [2 ] across the source plane. Here, Pl and P2 are the position vectors of  two typical source points and 
k is the wavenumber. We choose the plane of the source as the plane z = 0  of a suitable reference frame and 
we denote by Wz(rl, r2, k) the cross spectral density, in a plane z=cons t  > 0, between two points whose position 
vectors are rl and r2 (see fig. 1 ). 

In the paraxial regime ~1, the following propagation law holds, 

( ) W~(r~,r2, k)= ~ Wo(pl,p2,k) exp -~z[ ( r l -Pm)2- ( r2 -P2)  2] d2p~d2p2. (2.1) 

Here and in the following, infinite limits of  integration are assumed unless otherwise indicated. The power 
spectrum at a point r, say Sz(r, k), is obtained from eq. (2.1) by letting r~ =r:=r. The resulting expression 
for Sz can be written as 

~ Conditions under  which paraxial propagation can be assumed are discussed in ref. [ 11 ]. 
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Fig. 1. Illustration of  the notations used in this paper. 

S~(r,k)= 2-nz  Wo(Pl,p2, k ) exp  - - - - [ ½ ( P t + P 2 ) ' ( P ] - - P 2 ) - - r ' ( P ~ - P 2 ) ]  d2p~d2p2, (2.2) 
• Z 

where some terms have been rearranged in the exponential function. Eq. (2.2) can be written in an alternative 
way by introducing the variables 

~r=½(p, +P2),  x=k(p~-p2) • (2.3) 

On substituting from eqs. (2.3) into eq. (2.2) we obtain 

Sz(r,k)= ~ . Wo(a+~/2k, a-lr/2k, k)exp[-(i/z)lr.(a-r)]d2ad2z. (2.4) 

Eq. (2.4) will be the starting point of  our analysis. Before we proceed, it is important to distinguish between 
the power spectrum and the normalized spectrum. The latter, say sz(r, k), is defined as 

sz(r,k)=Sz(r,k)/S Sz(r,k) dk. (2.5) 
o 

Obviously, the normalized spectrum satisfies the condition 

S Sz(r, k) dk=  1, (2.6) 
o 

for any choice of  z and r. In other words, the normalized spectrum describes only the shape of the spectral 
curve regardless of the power content of  the radiation. 

3. The requirement of spectral invariance on propagation 

We require that the normalized spectrum is independent from r across any plane z=const.  >/0, or 
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Sz(r, k) = S z ( k ) .  (3.1) 

Let us define the function 

Iz(r)= ~f Sz(r, k) dk. (3.2) 
o 

This function can be thought of as the optical intensity at the point r in the plane z=  const. On inserting from 
eqs. (3.1) and (3.2) into eq. (2.5) we obtain the following requirement for spectral invariance, 

Sz(r, k) =Z~( k )Iz(r) . (3.3) 

Therefore, at any plane z=const.,  the power spectrum has to factorize into the product of two functions. One 
of these functions, namely Is(r), depends on z and r whereas the other depends on z and k. It is to be noted 
that eqs. (3.1) and (3.3) must hold even in the limit z--,0. Accordingly, the power spectrum satisfies the con- 
dition in the source plane 

So(p, k)=Z,o(k)lo(p). (3.4) 

We see from eq. (3.4) that any source satisfying the spectral invariance requirement (3.1) must possess the 
same normalized power spectrum (although not necessarily the same power spectrum) at any source point. 
This is to be contrasted to the case in which spectral invariance is required in the far field only. In that case, 
the invariance property can be exhibited by sources whose normalized spectrum changes across the source plane. 

We can further prove that the function Zz(k) is actually independent from z, Le. 

Zz(k)=Y,o(k) . (3.5) 

To prove this, let us integrate eq. (2.2) in the plane z=const.  We then obtain 

J S~(r, k) dEr = J ~  Wo(pl ,P2, k) e x p [ -  (ik/2z) (p~ +P2 )" (P~ -P2 )] O2p~ d2p2 

× ~ exp [2rti(r/2z). (Pl --P2 ) ] d2(r/);z) , (3.6) 

where 2 = (2n)/k.  The rightmost integral in eq. (3.6) equals the Dirac function J(p~ -P2) .  As a consequence, 
eq. (3.6) becomes 

~ Sz(r,k) d2r= f Wo(p,,p,,k)d2pl= f So(p,,k)d2p,. (3.7) 

On inserting from eqs. (3.3) and (3.4) into eq. (3.7) we obtain 

Zz(k) J- Iz(r) d2r=So(k) J- Io(p) d2p. (3.8) 

This proves that the two functions 2~z(k) and So(k) are proportional to each other. Actually, the proportion- 
ality factor is unity because the integral of both 27z(k) and 27o(k) with respect to k must be unity (see eqs. 
(2.6) and (3.1)).  

4. A sufficient condition for spectral invariance 

We can write the spectral invariance requirement (3.3) in the form 

(~nz)2 ~ Fo(tr, lr, k ) exp[ - (i/z)lr" (~r-r) ] d2tr d2~=Zo( k )Iz(r) , (4.1) 
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where eqs. (2.4) and (3.5) have been used and where 

Fo(a, x, k) -- Wo(tr+x/2k, o - x /2k ,  k) . (4.2) 

In order to satisfy eq. (4.1) for any value of z, we can require that Fo(cr, x, k) factorizes into the product of 
Xo(k) times a function of tr and x, say Ho(O, x), 

Fo(a, "r, k) =Xo( k )Ho(g, "r) . (4.3) 

Eq. (4.3) expresses a sufficient condition for the source in order to produce a normalized spectrum that is 
invariant through propagation in the half-space z~> 0. 

Taking into account eqs. (2.3), (4.2) and (4.3) we see that the cross spectral density across the source has 
the form 

W0(Pl , P2,  k) =Xo( k )Ho[ ½ (pt "b p2 ), k(pl --P2 ) ] • (4.4) 

In particular, the power spectrum across the source is given by 

So(p, k) =Xo( k )Ho(p, 0 ) .  (4.5) 

As a consequence, the degree of spectral coherence [ 2 ], namely 

flO(Pl, P2, k) = Wo(p~, P2,  k)/[So(p1, k)So(P2, k) ]1/2, (4.6) 

is given by 

I.to(Pl, P2, k) =Ho[ ½ (Pl +P2 ), k(pl -P2 ) ] / [Ho(pt, 0)Ho(P2, 0) ]1/2. (4.7) 

Let us recall that the scaling law [ 4 ], found for quasi homogeneous sources, requires that the degree of spectral 
coherence #o depends on the argument k(pl-p2)  only. We see from eq. (4.7) that the present condition for 
spectral invariance, namely eq. (4.4), implies for/to a rather more general form. However, as far as the de- 
pendence of go on k is concerned, eq. (4.7) is of the same form of the scaling law and can be considered a 
generalized scaling law. 

5. Examples 

(a) Let us first consider the class of quasi homogeneous sources [ 12 ]. In this case, the cross spectral density 
across the source can be approximated by 

Wo (a i, p~, k) = So ( ½ (Pl +P2 ), k)/~o (Pl -p2 ,  k ) ,  (5.1) 

where So (p, k) varies much more slowly with p than/to (p', k) varies with p ' .  On inserting from eq. (3.4) into 
eq. (5.1) we obtain 

Wo (Pl, P2, k) =Xo(k)Io( ½ (p, +P2 ) )go(P, -P2,  k ) .  (5.2) 

We have seen that the sufficient condition (4.4) for spectral invariance is satisfied if go depends on k through 
the variable k ( p l - - p 2  ) on ly  (see eq. (4.7)).  Accordingly, in eq. (5.2) #o must have the form 

~(p ,  -p~, k) =go[ k(a, - a s  ) ] ,  (5.3) 

where go(0) = 1. Eq. (5.3) expresses the Wolf's scaling law. The present result agrees with that of ref. [ l 1 ]. 
Note however that now only the normalized power spectrum is required to he the same at any source point 
whereas the power spectrum itself can differ from one source point to another (see eq. (3.4)).  

(b) A factorization property of the form (5. l ) can hold under more general conditions than those required 
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for quasi homogeneous sources [ 13 ]. More precisely, we can suppose the cross spectral density across the source 
to be given by the formula 

Wo(Pl, P2, k) =So(½ (p, +P2 ), k)Mo(pt -P2, k ) ,  (5.4) 

where, without loss of generality, Mo has been assumed to be unity for Pl =P2. Using eq. (3.4) we see that Wo 
has the form 

Wo(p,,p2, k)=Xo(k)Io(½(p, +P2 ), k)Mo(Pl -P2, k) . (5.5) 

The difference between eqs. (5.2) and (5.5) lies in the fact that Mo is not necessarily equal to the degree of 
spectral coherence. In fact, we have 

I o ( ½ ( p , + p 2 ) )  . . .  /-to(p,, P2, k) = [/--~, ~-o-~2 ~ ]T/2 -'~ao~.p, --P2, k ) .  (5.6) 

As a consequence, Mo coincides with/to only if the quasi homogeneous hypothesis applies, i.e. if Io(p) is a slow 
function o fp  and Mo(p', k) is a fast function ofp' .  The spectral invariance condition (4.4) requires that M0 
is a function of k(pt-P2).  Let us denote such a function by Lo, i.e 

Mo(pl --P2, k) =Lo [k(p, -P2 ) ] • (5.7) 

As an example, let us consider a gaussian Schell-model source [ 14 ]. The pertaining cross spectral density is 
given by 

Wo(p,,p2, k)=Zo(k)exp( P~+P~'~ (P'-P2)2"~ 4a2(k) J e x p ( -  2a2(k) j .  (5.8) 

At any temporal frequency, both the power spectrum and the degree of spectral coherence across the source 
are gaussianly shaped with variances a2(k) and a~(k) respectively. We can easily show that eqs. (5.5) and 
(5.7) can be satisfied through a suitable choice of tr 2 and a 2. In fact, eq. (5.8) can be written as 

[ 1 (P2a2(k)  ~ ) 2 1 [ ( 1 e x p  2try(k) l ) ] Wo(p,,p2, k)=Zo(k)exp ' 2  p---------Z2 - + ~  ( p , - p 2 )  2 . (5.9) 

In order to satisfy eqs. (5.5) and (5.7) it is sufficient to let 

a2(k) =a 2, 1/a2(k)+ 1/4a 2 =k2/a 2 , (5.10) 

where a is a suitable constant. This means that the variance a 2 of the power spectrum is independent from k 
whereas the variance a 2 of the degree of spectral coherence is the following function of k, 

tr2(k) =4tr2a2/(4a2k2-a 2) . (5.11 ) 

Eq. (5.11 ) requires that 2a, k>a for the range of values o f k  for which the normalized spectrum ,So(k) is dif- 
ferent from zero. It is immediately seen that this condition is compatible with vastly different coherence char- 
acteristics of the source. When a is much smaller than 2tr, k the quasi homogeneous limit is obtained. On the 
other hand, when a approaches 2a, k, the source becomes highly coherent. 

(c) As a last example, we consider a cross spectral density that satisfies condition (4.4) but that cannot be 
factorized in the form expressed by eq. (5.5). In ref. [ 15 ] the existence of a class of sources that emit fields 
that are shape-invariant through propagation was shown. Their cross spectral densities can be expanded in terms 
of the Hermite-Gauss functions, very well known from the laser theory. These expansions, for two-dimensional 
sources, are of the form [ 16 ] 

W(p~,p2, k) = ~. fl,,h(k)Gnh(pl, k)Gnh(p2, k ) ,  (5.12) 
n,h=O 
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1 2 
G,h(p, k )= v-~ 4-n2"g-hn!h ! H,(x/c2 ~/vo) Hh(x/c2 q/vo) exp[ - ( ~2 + q2) /v02] , (5.13) 

and ~ and ~/are the cartesian components of the position vector p on the source plane. In eq. (5.1 3 ) the function 
H,  is nth Hermite polynomial and the parameter Vo represents the spot-size of the zeroth-order mode [ 1 7 ] and 
contains implicitly the dependence on k. 

For the first two functions of this class, namely W t°) and W t l), the expansion coefficients are given by 

ri<,]~ (k) =r io(k)[q(k)  ] "+h , (5.14) 

ri<,~) (k) = (n + h)rio(k) [q(k) ] ,+h - , ,  (5.1 5) 

respectively, where rio(k) is an arbitrary positive function of k and 

0<q (k )  < 1, Vk. (5.16) 

The closed forms of these two functions are respectively given by 

WCO)(pl, p2 ) = rio 2 v02 n( 1 _q2)  exp[ -p2(pl +P2 ) 2 -  m2(pl -P2 )2] , (5.17) 

WCl)(pl,p2) - rio 4 l)0 2 /t( 1 __q2)2 [ q + p 2 ( p  I +P2 ) 2 - - m 2 ( p !  --P2) 2 ] exp[ -p2(pl +P2 )2--m2(Pl -P2 )2], 

(5.18) 

where we introduced for convenience the notations 

1 ( l -q~ ,  m2 = 1 ( l + q ' ~ ,  
p2= 2v--~o \ ~ q ]  ~ \1 - q ]  (5.19) 

and we omitted the explicit dependence on k. 
We already considered the case of W <o) in the previous example. As a matter of fact, this cross spectral den- 

sity exactly corresponds to the one produced by a gaussian Schell-model source, if one simply sets 

p2_ 1 m2 = 1 1 
8o ' + ' (5 .20 )  

as can be seen by comparison,o f eq. (5,9) and eq. ( 5.17 ). From the previous example it follows that, by re- 
questing (see eqs. (5.10) ) 

p2=const., m2 =k2/2a 2, (5.21) 

the cross spectral density produced by this kind of source automatically satisfies eq. (4.4). One way to satisfy 
eqs. (5.21) is by imposing, for example, 

l + q  k 1 1 k 
1 - q -  k o '  2v02 - w02/Co' (5.22) 

where ko and Wo are arbitrary positive constants (see eqs. ( 5.1 9)) .  
On the contrary, if we substitute from eqs. (5.22) into eq. (5.18), the resulting expression of W °)  is not 

in the form of eq. (4.4), because of the presence of the linear term in q. 
Let us consider instead a linear combination of W co) and W t~) of the form 

Wo(pl ,P2 ) = ot (q) W ( ° ) ( p  I ,P2 ) -'[- W (1)(,01 ,P2 ) , (5.23) 
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and let us demonstra te  that such a cross spectral density can be expressed in the form (4.4) by suitably choosing 
the function or(q). 

By imposing the relation 

a( q)=2( c -q )  / (1 _q2) , (5.24) 

where c is an arbitrary constant,  and substituting f rom eqs. (5.17),  (5.18),  (5.19),  (5.22) and (5.24) into 
eq. (5.23),  we obtain 

/Co k + \---W-~o ,/ \ Wo / d Wo(,l ,P2,  k ) =  2 - - -~ (~0  0 1 ) 4 ~ [ C ' ¥  (PI 'J-p2)2--  ( ~ ) 2 ( p l - - p 2 ) 2 1  

 x,,r u, (,,,-,<1 
k - k  w---~/ \ Wo / ._1 ' 

which is exactly of  the form (4.4),  with 

So(k)  = 2~w----~ + 1 - -  , (5.26) 

and 

Ho(.~r, lr) = [c+4(~/Wo) 2 - (¢/kowo) 2 ] exp[ - 4(~r/wo) 2 - 0r/kowo)2].  (5.27) 

To gaurantee the nonnegativity o f  the integral operator  whose kernol is given by Wo, we must  request that 
or(q) > 0 for all the wavelengths that  belong to the spectrum of  the source. Recalling eq. (5.24),  the previous 
condition implies c>  q. Taking into account eq. (5.16),  if  c>  1 this condition is automatical ly satisfied. 

Using eqs. (4.5)  and (4.7) ,  the power  spectrum and the degree of  spatial coherence of  this source assume 
the following expressions: 

So(P, k) =27o(k) [cq-4(p/Wo) 2 ] exp[ - 4 ( p / W o ) 2 ] ,  (5.28) 

2_ ( ~ (e,__p2 ~ ]~[C+4(p,~ lC+4(P2~ 1~ ,,r, ( k ~ l ( e ' - " 2 Y l  ' ' ' . .  , 
k \ Wo ] \ ~ )  \ - - ~ o  ] d I.k \~oo2 JL \~oo1 J J  exp [k  - \ k o )  1 \ - - - ~ o  ] )"  

(5.29) 

In fig. 2 we show the behaviour of/to(p~, P2, k) as a function of~l for different values of~2 (letting rh =r/2=O),  

~to(Pt,Pz,k) 

q 
/, ",,, 

i1.,,' " k ;\ ,/" 
-1: 0 - " x - ~ " - ~ "  - ~ " ' - ]  io 20 

0.0 
~'= 1.5 c = 0.5 ~ I ( p )  ~] = 05  c :  ,.o I 2 o +  
~ = - - - - c = 1.5 / " / " \  

l.o .......... c=2.ol / | \ 
~ =  . . . . . . . . . . . .  J i . - I - .  , 

- i / I ~\ 
/ , '  ,.o ' \  

h / - - - -  ----. .  '?,, 

, • , . , , , , ~ 

~1 -2.o -1.o o.o ,.o 2 . o l p  I 

Fig. 2. Degree of spectral coherence #o(Pt, 02, k) given by eq. 
(5.29) as a function of ~j for different values of ~2 (letting 
~/1 -- q2=0), with k/ko=3 and Wo= 1. 

Fig. 3. Distribution of the optical intensity lo(p)= 
So(p, k)/Xo(k), as a function of IPl, for different values of c, 
with Wo= 1. 
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c=l.0 
c = 2.0 ~ 1.0,4 

.......... C = 4.0~ l 

-1.0 ~ 

, ~to(PrO,k) 

i 

0.0 ~ 1.0 
, It 

IPtl 

Fig. 4. Degree of spectral coherence/ao(#~, 02, k) for different 
values nfc (with k/ko=3, wo= i,p2=0). 

k/k o = 2.5 , ~['tO(Pl,O,k) 

k/ko= 3.01 1' 9 

, ,  P!',\ 
Fig. 5. Degree nf spectral coherence/zo(p~, P2, k) for different 
wavenumbers (with c= 1, wo =1, P2 = 0). 

while keeping f ixed the value o f  k/ko. As it is seen, the degree of  coherence does not  depend  on (O1 - P 2 )  only, 
as was the case for the previous examples.  

The d is t r ibut ion  o f  the optical  intensi ty Io(p)=So(p, k)/Xo(k) is represented in fig. 3 for different  values 
o f  the constant  c: by increasing c the d is t r ibut ion  tends to assume a gaussian profile,  as the cont r ibut ion  o f  
W to) becomes p redominan t  in the l inear  combina t ion  (5.23) .  For  the same reason also go (O1, P2, k)  tends  t o  
a gaussian curve as c increases (fig. 4) .  

At  last, in fig. 5 we show the dependence  o f g o ( p b  P2, k)  on k. As it is seen, the width o f  the d is t r ibut ion  
decreases by increasing k or, equivalent ly,  by decreasing the wavelength o f  the radia t ion.  

6.  C o n c l u s i o n s  

It is known that  par t ia l ly  coherent  sources emi t  fields whose spectra  generally change on propagat ion.  In  this 
paper  we in t roduced a condi t ion  which, in paraxial  approx imat ion ,  ensures spectral  invar iance o f  fields emi t ted  
by par t ia l ly  coherent  sources. This  condi t ion  can be satisfied by a wide class o f  sources, as it  was shown by 
examples,  and  reduces to the scaling law in the special case o f  quasi  homogeneous  sources. 
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