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A superresolving pupil working with incoherent objects is emulated through an image postprocessing. The method simply 

requires the convolution of the image intensity distribution with a suitable correction function. Experimental results are given. 

1. Introduction 

A low-pass filtered signal, with bandwidth 2 r+,,, is 
completely determined by a set of samples at a dis- 
tance (2 vhl ) - ’ from each other. This distance is usu- 
ally assumed as the resolution limit allowed by the 
filter. However, it is well known [ 1 ] that “a priori” 
information about the input signal can be used to 
lower the resolution limit. A frequently used “a 
priori” information is the knowledge that the input 
signal has a finite support. In this case, the image can 
be processed so as to obtain an enhancement of res- 
olution in the interval inside which the input signal 
exists. To this aim, several methods have been en- 
visaged, ranging from iterative procedures [ 2 ] to the 
use of eigenfunctions [ 3 ] or singular functions [ 4 ] 
of the operator describing the image formation. All 
these methods involve non-trivial mathematical al- 
gorithms. A potentially attractive alternative would 
be to make use of the very first method for super- 
resolution, namely the superresolving pupil [ 5 ]. This 
would lead to a real time superresolution without the 
need for any image postprocessing. Unfortunately, 
the superresolving pupil requires that severe toler- 
ance conditions are met in the fabrication process 
and this has prevented its practical use. This is ul- 
timately due to the ill-posed nature of the superre- 
solution problem [4]. Such a characteristic also 
manifests itself through numerical instabilities in any 
postprocessing method but, of course, it is easier to 
deal with these difficulties in a numerical processing 

rather than in an actual fabrication procedure. 
In a previous paper [ 6 1, we showed that there ex- 

ists a simple method for emulating the effect of a su- 
perresolving pupil through image postprocessing. The 
method applies to objects illuminated by light of any 
state of coherence and it was experimentally tested 
in the limiting case of coherent illumination [ 6 1. In 
the general case of partially coherent illumination, 
the quantity to be processed is the cross-spectral den- 
sity [ 71 across the image and the quantity to be re- 
covered is the cross-spectral density across the object. 
Now, in many instances, one is interested in the re- 
covery not of the whole cross-spectral density at the 
object plane but just of its diagonal elements, i.e. of 
the optical intensity. Nonetheless, the whole cross- 
spectral density across the image is to be processed. 
This is an intrinsic feature in case of partially co- 
herent illumination and, of course, it is a rather in- 
convenient one because it requires to measure and 
process the cross-spectral density, i.e. a function of 
two position vectors, whereas the sought intensity is 
a function of one position vector only. 

In this paper, we prove that if the object is illu- 
minated with spatially incoherent light the knowl- 
edge of the image intensity distribution is sufficient 
for emulating the superresolving pupil. Further- 
more, we explicitly calculate the correction function 
to be used for the image postprocessing and exper- 
imentally test the method through the application of 
the correction procedure to a number of measured 
data. 
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2. Principle of the method itation of the object is accounted for by Zi,(y) itself. 

Let us consider the image forming system sche- 
matically represented in fig. 1. Here, the y-, v- and 
x-planes are the input (object), pupil and output 
(image) plane, respectively. All of them coincide with 
focal planes of the two (identical) lenses L, of focal 
length f: For simplicity, one-dimensional signals are 
considered, the extension to two-dimensional rec- 
tangular coordinates being only a matter of more 
cumbersome symbolism. We assume that the system 
is a perfect low-pass filter, with bandwidth 2vM so 
that its incoherent transfer function (say H( v) ) and 
its impulse response (say S(x) ) can be written [ 8 ] #I 

Let p( v) be the amplitude transmission function 
of a superresolving pupil vanishing for I v I > vM and 
let S,,,(x) be the corresponding incoherent impulse 
response, i.e. the Fourier transform of the autocor- 
relation function of p( v) [ 81. If such a pupil could 
be used in the system of fig. 1, the superresolved out- 
put intensity, say (lo& would be 

(zo)seo(x)= I Ii”(Y) ssup(X-Y) dY. (2.4) 

Fourier transformation of eqs. (2.3) and (2.4) gives, 
respectively, 

H(v)=2vM(1-lvyJ/2vM), for IvlG2v,, 

=o, for lv1>2vM, 

(2.1) 

and 

F{Z,}(v)=F{li”j(v)H(v) > 

and 

(2.5) 

F{(Z,),,,)( v) 

S(x)=4& sinc2(2v,x) , (2.2) 

respectively, where as usual sine (x) = sin ( XX) /zx. 
For such a system, the output intensity distribution 
lo(x) can be expressed through the input intensity 
Zi,(y) by means of the equation [8] 

Zo(X)= S I,“(Y) S(X-Y) dV. (2.3) 

In eq. (2.3) and in the following, infinite limits of 
integration can be assumed because the spatial lim- 

=F{Z~,}(~)[P(V)*P(V)I > (2.6) 

where F{ } means Fourier transform and * denotes 
correlation operation. On inserting F{Zi,} ( v) as de- 
ducible from eq. (2.5 ) into eq. (2.6 ) and making an 
inverse Fourier transformation (to be denoted by 
F-l{ }) we obtain 

(Zo)su&) =Zo(x) *K(x) 9 

where * denotes convolution and 

(2.7) 

” Throughout this paper, the incoherent transfer function is as- 

sumed equal the true autocorrelation of the coherent pupil 

function rather than its normalized version. This should facil- 

itate the comparison with the coherent case. 

K(x)=F-‘(P(v)*P(v)IH(v)J. (2.8) 

Eq. (2.7) shows that the intensity distribution of the 
superresolved image can be obtained from that of the 
actual low-filtered image through a simple convo- 
lution operation. Therefore, such an operation con- 
stitutes an image postprocessing method for 

Fig. 1. Image forming system considered for describing the postprocessing method. L represents a converging lens of focal length fand 
they-, Y- and x-planes represent the input (object ), pupil and output (image) planes, respectively. 

99 



Volume 67. number 2 OPTICS COMMUNICATIONS 15 June 1988 

emulating the superresolving pupil with incoherent 
objects. It is to be noted that in this case, differently 
from the general case of partially coherent illumi- 
nation [ 61, only the knowledge of the diagonal ele- 
ments of the cross-spectral density, namely of the 
optical intensity Z,,(x), is required for the correction 
procedure [ 9 1. Furthermore, due to the band-lim- 
ited nature of Z, and to the sampling theorem, only 
a discrete set of samples of 1, (the effective mea- 
sured data) can be used for the convolution in eq. 

(2.7) vi. 
We finally observe that, as H( ? 2 vM ) = 0, in order 

to make sure of the non-divergency of the quantity 
inside brackets at the right-hand side of eq. (2.8), 
the behavior at the same points -t 2 vM of the auto- 
correlation p( u)*p( v) should be examined closely. 
We will see in the next section that, for the pupils we 
are concerned with, F{K(x)} is a well behaving 
function. 

3. Evaluation of the correction function 

In this section we want to evaluate the explicit cor- 
rection function K(x) to be used for the image post- 
processing. As in ref. [ 61, we follow the direct 
method of Toraldo di Francis [ 51 and we express 
the (bandlimited ) impulse response S,,,(x) through 
a superposition of suitably weighted sinc( 2 vMx)- 
functions. As a consequence, the superresolving pupil 
transmission function p( v) can be written 

p( VI =,$_,Pn 
X exp’(2zinv/2vM) rect( v/2v,) , (3.1) 

where symmetrical weights can be assumed, i.e. 
P_~ =p,,. On inserting from eqs. (3.1) and (2.1) into 
eq. (2.8) and on calculating the autocorrelation 
function, we obtain 

x exp[ni(n+m) v/2vM] 

X sinc[ (n-m)( 1- I v]/2vM)] 
I 

, (3.2) 

where the asterisk denotes the complex conjugate. 
After some algebra for the calculation of the inverse 
Fourier transform at the right-hand side of eq. (3.2), 
the following expression is obtained for K(x) 

K(x)= 5 lPn124VM n=--N 

Xsinc(4vMx+2n)+K,(x), (3.3) 

where 

K,(x) 

n + m 

X cos(4n~~~+7rn+7rm) Si[8rrvMx+2nn+2rcm] 

+ sin(4nvMx+nn+7rm) 

x [r-Ci( 18nvMx+2nn+2nmI) 

+ ln( ]8~vMx+2~n+2~ml)] , (3.4) 

for4rtvMx + 7cn + nm - aln - ml = 0or47cvMx 
+ nn + RWI + nln-ml = 0, and 

N N 

Ki(X)=HCNm~_HPnP:i 2v,lnln-ml 

x {cos(4nv,x+nn+am) 

X [Si(4nvMx+nn+nm+7r\n-nz] ) 

- Si(4nv,x+an+nm-nln-mj )] 

+ sin(4nu,x+nn+am) 

x [Ci( 14nvMx+nn+7rm-nln-ml I) 

- Ci( ~4nv,x+nn+;rrm+nln-ml I) 

+ ln( (4v,x+n+m+ In-ml l/14vMx 

+n+m- In-ml III}, (3.5) 

otherwise. In eqs. (3.4) and (3.5), Si and Ci denote 
sine- and cosine-integral, respectively, and 

~~0.5772156649 is the Euler constant. The behav- 
ior of K(x) / vM as a function of vMx is shown in fig. 
2. The values of N and pn are the same as used in ref. 
[6], i.e. N=5 and po= 1, p,=-0.25, p,=O.75, 
p3= -4.5, p4=3, ps=2. 
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K(xl 
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Fig. 2. Correction function used for the image postprocessing (eq. 

(3.3)), with N=5 andp?=l, pi=-0.25, p,=O.75,p,=-4.5, 

p4=3,ps=2. 

4. Experiment 

The superresolving method described in section 2 
has been tested through the experimental setup 
sketched in fig. 3. A laser beam, made incoherent by 
the passage through the rotating ground glass G, il- 
luminates two parallel slits S, and SZ. The spatially 
incoherent secondary sources S, and Sz are then im- 
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Fig. 4. Theoretical (full line) and experimental (heavy dots) in- 

tensity distribution in the image of two unresolved point sources. 

Encircled experimental points have been used for the correction 

procedure. Nyquist distance is taken as unit on the x-axis. 

aged through the low-pass filter P. In fig. 4, theoret- 
ical and experimental intensity distributions are 
reported. As it is evident from fig. 4, the two sources 
are not resolved in the image. A set of measured in- 
tensity data, corresponding to points (encircled in 
fig. 4) spaced at the Nyquist rate 1/2v,, has then 
been used for the convolution with the correction 
function calculated in section 3. The resulting inten- 
sity distribution (Z,,)sUp(x) (see eq. (2.7)) is in- 
cluded between the upper and lower curve of fig. 5. 
The uncertainty is produced by the measurement er- 
rors on the reconstruction process and it was eval- 
uated by repeating the experiment several times to 
obtain different noise realizations. In any case, the 
two image points are now clearly resolved, i.e. the 
superresolution effect has been obtained. 

Fig. 3. Experimental setup used for testing the superresolving method. G: rotating ground glass; S,, Sz: secondary spatially incoherent 
sources; L: converging lens of focal lengthf; P: low-pass filter; I: image plane. 
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Fig. 5. Curves representing the superior and inferior limits for 

the superresolved image intensity distribution. Unit on the x-axis 

is taken as in fig. 4. 

5. Conclusions 

An image postprocessing method able to emulate 
a superresolving pupil in partially coherent light has 
been proposed not long ago [ 6 1. Such a method re- 
quires the convolution between the cross-spectral 
density measured at the image plane and a suitable 
correction function. In this paper, we demonstrated 
that, in the limiting case of incoherent illumination, 
the method can be modified in such a way as to im- 
ply only the convolution between the actual image 
intensity distribution and a suitable correction func- 
tion. Such a function has been explicitly evaluated 

and then used for processing an experimentally de- 
termined intensity distribution representing two un- 
resolved image points. Due to the band-limited 
nature of the image, it has been possible to use for 
the convolution only a discrete set of measured data, 
corresponding to points spaced at the Nyquist rate. 
Furthermore, a low number of experimental data has 

been sufficient to obtain superresolution in the cor- 
rected image intensity distribution. 
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