Esame di Fisica Generale I per Elettronici (Primo modulo)

Cognome...... Nome....

Numero di Matricola	
(Prova del 13 giugno 2000)	

Avvertenze:

Le soluzioni dei due problemi dovranno essere riportate sul retro di questo foglio, con una breve descrizione del procedimento e delle formule usati per ottenerle. Non si potranno adottare simboli che non siano stati chiaramente definiti. I risultati numerici, quando previsti, dovranno essere corredati dalle opportune unità di misura ed espressi da non più di tre cifre significative.

PROBLEMA N.1B

Un punto materiale si muove nel piano xy con le seguenti leggi orarie:

$$x(t) = R\cos(\beta t^2)$$
; $y(t) = R\sin(\beta t^2)$

con $\beta = 1.5 \text{ s}^{-2}$. Determinare

- 1. l'andamento del modulo della velocità in funzione del tempo: v(t);
- 2. il valore del rapporto, r, tra accelerazione normale e accelerazione tangenziale quando il punto ripassa per la prima volta dopo t = 0 dalla posizione (R, 0);
- 3. lo spazio percorso, ℓ , dal punto prima che la sua accelerazione normale raggiunga il valore $\bar{a}_n = 12 \text{ m/s}^2$.

PROBLEMA N.2B

Una molla ideale, di costante elastica k e lunghezza a riposo l_0 , è tenuta compressa tra due masse, m_1 e $m_2 = 2m_1$, unite da un filo di lunghezza $l = l_0/2$ (vedi figura). Ad un certo istante il filo viene tagliato e le due masse partono in direzioni opposte su un piano orizzontale liscio. Successivamente, la massa m_1 comincia a salire lungo un piano inclinato scabro, avente angolo di base ϑ e coefficiente di attrito dinamico μ . Se $k = 10^2$ N/m, $l_0 = 10$ cm, $m_1 = 50$ g, $\vartheta = 45^\circ$ e $\mu = 0.5$, determinare:

- 1. il rapporto tra le energie cinetiche dei due corpi, $r = E_c^{(1)}/E_c^{(2)}$, subito dopo che la molla è ritornata in condizioni di riposo;
- 2. la quota massima, h_1 , raggiunta da m_1 .

