Esame di Fisica Generale I per Elettronici (Primo modulo)

Cognome.. Nome...

Numero di Matricola..

(Prova del 12 giugno 2001)

Avvertenze:
Le soluzioni dei due problemi dovranno essere riportate sul retro di questo foglio, con una breve descrizione del procedimento e delle formule usate per ottenerle. Non si potranno adottare simboli che non siano stati chiaramente definiti. I risultati numerici, quando previsti, dovranno essere corredati dalle opportune unità di misura ed espressi da non più di tre cifre significative.

PROBLEMA N.1B

Un corpo di massa m viene trainato per mezzo di una fune, su per un piano scabro, di lunghezza L (misurata lungo il piano), inclinato di un angolo α rispetto all'orizzontale. Il coefficiente di attrito dinamico tra il corpo e il piano è μ. Alla fune, che ammette un carico di rottura T_{max}, viene applicata la forza F, diretta nella direzione parallela al piano e di modulo costante. Il corpo parte con velocità nulla da quota nulla.

(valori numerici: $m = 1 \text{ kg}$, $L = 1 \text{ m}$, $\alpha = 30^\circ$, $T_{\text{max}} = 10 \text{ N}$)

1. Scrivere la legge oraria del corpo.

2. Determinare il massimo valore di μ, oltre il quale il tempo impiegato per portare il corpo fino alla sommità del piano inclinato non può essere minore di $t_{\text{max}} = 1 \text{ s}$.

3. Prendendo per μ ed F i valori di cui al punto 2, calcolare la velocità che il corpo raggiunge in corrispondenza della sommità del piano.
PROBLEMA N.2B

Un punto materiale di massa $m = 100$ g si può muovere lungo una guida liscia rettilinea (asse x) soggetto all’azione di due molle, entrambe di lunghezza a riposo nulla e costante elastica $k = 1$ N/m, fissate rispettivamente ai punti P_1 e P_2 (vedi figura). Il punto P_1 è distante $h = 10$ cm dall’asse x, mentre P_2 è sull’asse x. La distanza tra P_2 e il piede della perpendicolare all’asse x passante per P_1 è $2d$.

1. Determinare la posizione di equilibrio della massa m lungo l’asse x.

2. Scegliendo la posizione di equilibrio come origine dell’asse x, scrivere l’espressione dell’energia potenziale del sistema, $U(x)$.

3. Determinare la pulsazione (ω) delle oscillazioni intorno alla posizione di equilibrio.

4. Calcolare la reazione del vincolo (N) esercitata dalla guida.