Fisica I per Ingegneria Elettronica

A.A. 2008/2009 – appello dell'8 settembre 2009

Problema n. 1

Un cannone può sparare proiettili con angolo di alzo $\theta=60^\circ$ e velocità v_0 regolabile a piacere. Un bersaglio è posto a distanza L=100 m dal cannone, all'altezza h=20 m dal suolo. Calcolare

- 1. il valore di v_0 tale che il proiettile colpisca il bersaglio;
- 2. la massima quota (H) raggiunta dal proiettile durante il moto;
- 3. il modulo della velocità del proiettile (v_1) al momento dell'impatto col bersaglio;
- 4. l'angolo (φ) che il vettore velocità forma con l'asse orizzontale al momento dell'impatto.

Problema n. 2

Un corpo di massa m=1 kg, assimilabile ad un punto materiale, si muove su un piano orizzontale scabro, con coefficiente di attrito dinamico $\mu_d=0.5$ (vedi figura). All'istante t=0, esso transita per il punto A con velocità v_A . Dopo aver percorso un tratto di lunghezza d=2 m da tale posizione, esso va a comprimere una molla ideale, di costante elastica k=10 N/m, inizialmente a riposo, disposta come in figura.

1. Si determini il minimo valore di v_A tale che il corpo arrivi a toccare la molla (v_m) .

Nell'ipotesi che sia $v_A = 6$ m/s, si calcolino

- 2. la velocità nella posizione B (v_B) e il tempo necessario per arrivarci $(t_B);\,$
- 3. la massima compressione della molla $(\delta);$
- 4. il minimo valore del coefficiente di attrito statico, μ_s , che il piano deve presentare affinché il punto materiale rimanga in equilibrio nella posizione di massima compressione della molla.

$\begin{array}{ccc} & & & k \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\$

Problema n. 3

Il potenziale elettrostatico (con riferimento all'infinito) alla superficie di una sfera uniformemente carica, di carica totale Q, vale V_0 . Alla distanza l dalla superficie della sfera, esso si riduce a un terzo. Determinare:

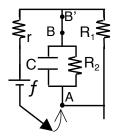
- 1. il raggio R della sfera;
- 2. la densità di carica elettrica della sfera;

Il materiale costituente la sfera viene diviso in due parti uguali, dotate quindi di stessa carica, modellate in forma sferica e collocate a distanza 3R fra i loro centri. Calcolare:

- 3. la forza reciproca;
- 4. l'energia richiesta per portare una particella puntiforme di carica $q=9\,Q$ dall'infinito al punto di mezzo fra le due sferette.

Valori numerici: l = 6 cm; $V_0 = 100$ V.

Problema n. 4


Il circuito in figura viene acceso al tempo t = 0, ponendo l'interruttore indicato dalla freccia in posizione A, e ha tempo sufficiente a raggiungere la situazione di regime. Sapendo che $R_1 = R_2$, si chiede:

- 1. la corrente erogata dal generatore all'accensione $(t=0^+)$ e il suo valore numerico;
- 2. la differenza di potenziale ai capi del condensatore, $V_B V_A$, all'accensione $(t = 0^+)$ e nella situazione di regime, e i rispettivi valori numerici.

Successivamente, al tempo $t=t_0$ un difetto nel filo crea un'interruzione nel punto $B^\prime.$ Si chiede:

- 3. il grafico della corrente in R_2 per $t>t_0^+$ (si diano esplicitamente le espressioni dei valori all'inizio e alla fine del processo);
- 4. l'energia totale dissipata per effetto Joule nel resistore R_2 dopo la rottura del filo, e il suo valore numerico.

Valori numerici: $R_2=2~\Omega;~r=1~\Omega;~C=4~\mathrm{nF};~f=12~\mathrm{V}.$

