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The purpose of these lectures

The purpose of these lectures is

to present the mathematical objects and methods useful in
the identification of Lie algebras,

to develop the essential computational skills necessary for that
purpose,

to review some known facts about the structure of complex
and real finite dimensional Lie algebras.

L. Snobl and P. Winternitz Classification and Identification of Lie Algebras



The main reference

The individual lectures will closely follow selected chapters in

Title: Classification and Identification of Lie Algebras

Authors: Libor Šnobl and Pavel Winternitz

A co-publication of the AMS and
Centre de recherches mathématiques.

CRM Monograph Series, Volume: 33
2014; 306 pp; hardcover
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The topics to be covered

motivation, basic notions, structure of semisimple Lie algebras
- lectures I & II,

invariants of the coadjoint representation, a.k.a. Casimir
invariants - lectures III & IV,

basis independent properties of Lie algebras and their use in
the identification - lecture V,

explicit decomposition into a direct sum - lecture VI,

Levi decomposition - lecture VII,

computation of the nilradical - lecture VIII,

nilpotent Lie algebras, solvable Lie algebras with a given
nilradical - lectures IX & X
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Why to be interested in the identification and classification
of Lie algebras?

Example: Consider two systems of PDEs, namely the well–known
shallow water equations in a flat infinite basin

UT + UUX + VUY + HX = 0, VT + UVX + VVY + HY = 0,

HT + (UH)X + (VH)Y = 0
(1)

and in a circular paraboloidal basin subjected to a Coriolis force
due to the rotation of the fluid inside the basin (together with the
Earth)

ut + uux + vuy + (Z + h)x = fv , Z (x , y) =
ω2 − f 2

8
(x2 + y2),

vt + uvx + vvy + (Z + h)y = −fu, ht + (uh)x + (vh)y = 0
(2)

and compute their algebras of infinitesimal point symmetries.
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Symmetry algebras of shallow water equations, flat basin

One finds two seemingly different 9–dimensional symmetry algebras
gA and gB spanned by the following vector fields, respectively

PT = ∂T , PX = ∂X , PY = ∂Y , GX = T∂X + ∂U ,

GY = T∂Y + ∂V ,D1 = T∂T + X∂X + Y ∂Y ,

D2 = −T∂T + U∂U + V ∂V + 2H∂H ,

L1 = −Y ∂X + X∂Y − V ∂U + U∂V ,

Π = T 2∂T + TX∂X + TY ∂Y + (X − TU)∂U

+(Y − TV )∂V − 2TH∂H

(3)
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Symmetry algebra of shallow water equations, flat basin,
gA

PT PX PY GX GY D1 D2 L1 Π

PT 0 0 0 PX PY PT −PT 0 D1 − D2

PX 0 0 0 0 0 PX 0 PY GX

PY 0 0 0 0 0 PY 0 −PX GY

GX −PX 0 0 0 0 0 GX GY 0

GY −PY 0 0 0 0 0 GY −GX 0

D1 −PT −PX −PY 0 0 0 0 0 Π

D2 PT 0 0 −GX −GY 0 0 0 −Π

L1 0 −PY PX −GY GX 0 0 0 0

Π −D1 + D2 −GX −GY 0 0 −Π Π 0 0
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Symmetry algebra of shallow water equations, paraboloidal
basin, Coriolis force

P0 = ∂t , D = x∂x + y∂y + u∂u + v∂v + 2h∂h,

Y1 = cos(R1t)∂x − sin(R1t)∂y − R1 sin(R1t)∂u − R1 cos(R1t)∂v ,

Y2 = sin(R1t)∂x + cos(R1t)∂y + R1 cos(R1t)∂u − R1 sin(R1t)∂v ,

Y3 = cos(R2t)∂x + sin(R2t)∂y − R2 sin(R2t)∂u + R2 cos(R2t)∂v ,

Y4 = sin(R2t)∂x − cos(R2t)∂y + R2 cos(R2t)∂u + R2 sin(R2t)∂v ,

R = y∂x − x∂y + v∂u − u∂v ,

K1 =
1

2
cos(ωt) (x∂x + y∂y − u∂u − v∂v + f (y∂u − x∂v )− 2h∂h) +

+
1

2ω
sin(ωt)

(
f (y∂x − x∂y + v∂u − u∂v )− ω2(x∂u + y∂v ) + 2∂t

)
,

K2 = −1

2
sin(ωt) (x∂x + y∂y − u∂u − v∂v + f (y∂u − x∂v )− 2h∂h)

+
1

2ω
cos(ωt)

(
f (y∂x − x∂y + v∂u − u∂v )− ω2(x∂u + y∂v ) + 2∂t

)
(4)
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The Lie algebra gB of (4)

where1

R1 =
1

2
(ω + f ), R2 =

1

2
(ω − f ).

The Lie algebra gB of (4) has the radical (max. solvable ideal)

R(gB) = span{D,R,Y1,Y2,Y3,Y4},

the nilradical (maximal nilpotent ideal)

NR(gB) = span{Y1,Y2,Y3,Y4},

and the Levi factor (semisimple subalgebra complementing the
radical)

p = span{P0 +
f

2
R,K1,K2}.

1D. Levi, M.C. Nucci, C. Rogers, P. Winternitz 1989 J. Phys. A 22
4743–4767
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Symmetry algebra of shallow water equations, paraboloidal
basin, Coriolis force, gB

P0 K1 K2 D R Y1 Y2 Y3 Y4

P0 0 ωK2 −ωK1 0 0 − f +ω
2

Y2
f +ω

2
Y1

f−ω
2

Y4
ω−f

2
Y3

K1 −ωK2 0 −1
ω

(P0 + f
2
R) 0 0 − 1

2
Y3

1
2
Y4 − 1

2
Y1

1
2
Y2

K2 ωK1
1
ω

(P0 + f
2
R) 0 0 0 1

2
Y4

1
2
Y3

1
2
Y2

1
2
Y1

D 0 0 0 0 0 −Y1 −Y2 −Y3 −Y4
R 0 0 0 0 0 Y2 −Y1 −Y4 Y3

Y1
f +ω

2
Y2

1
2
Y3 − 1

2
Y4 Y1 −Y2 0 0 0 0

Y2 − f +ω
2

Y1 − 1
2
Y4 − 1

2
Y3 Y2 Y1 0 0 0 0

Y3
ω−f

2
Y4

1
2
Y1 − 1

2
Y2 Y3 Y4 0 0 0 0

Y4
f−ω

2
Y3 − 1

2
Y2 − 1

2
Y1 Y4 −Y3 0 0 0 0
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The Lie algebra gB of (4), continued

In the adjoint representation of gB the element D acts on the
nilradical NR(gB) diagonally as a multiple of a unit matrix whereas
R acts on it as a rotation. Both elements commute with the Levi
factor.

From the indefinite signature of the Killing form of the Levi factor
p it follows that p is isomorphic to the simple algebra sl(2,R). The
adjoint action of the Levi factor p on the nilradical NR(gB)
corresponds to a direct sum of two 2–dimensional irreducible
representations of sl(2,R).
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The Lie algebra gA of (3)

Somewhat surprisingly, the Lie algebra gA of (3) has the same
structure. When expressed in suitable bases which make the
structure transparent, the two algebras gA and gB turn out to be
isomorphic as Lie algebras. Namely, the Lie brackets expressed in
the following two bases of gA and gB , respectively, imply the same
structure constants

e1 = PT , e2 = D1 − D2, e3 = −Π, e4 = −(D1 + D2),

e5 = L1, e6 = PY , e7 = PX , e8 = GY , e9 = GX ,

ẽ1 = − 1

ω

(
P0 +

f

2
R

)
+ K2, ẽ2 = −2K1,

ẽ3 =
1

ω

(
P0 +

f

2
R

)
+ K2, ẽ4 = −D, ẽ5 = R, ẽ6 = Y1 − Y3,

ẽ7 = Y2 + Y4, ẽ8 = −Y2 + Y4, ẽ9 = Y1 + Y3.
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The Lie algebras gA ' gB

e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 0 2e1 −e2 0 0 0 0 e6 e7

e2 −2e1 0 2e3 0 0 −e6 −e7 e8 e9

e3 e2 −2e3 0 0 0 e8 e9 0 0

e4 0 0 0 0 0 e6 e7 e8 e9

e5 0 0 0 0 0 e7 −e6 e9 −e8

e6 0 e6 −e8 −e6 −e7 0 0 0 0

e7 0 e7 −e9 −e7 e6 0 0 0 0

e8 −e6 −e8 0 −e8 −e9 0 0 0 0

e9 −e7 −e9 0 −e9 e8 0 0 0 0
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Isomorphisms between vector field realizations

That does not by itself imply that the two sets of vector fields (3)
and (4) are related to each other by a point transformation but it
is a necessary condition for it and a hint that such a
transformation may exist.

Indeed, using computer algebra we find a locally invertible map

Φ : R6[t, x , y , u, v , h]→ R6[T ,X ,Y ,U,V ,H]

which transforms the algebra of vector fields (3) into (4).

Explicitly, the transformation Φ reads
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Mapping the algebra of vector fields gA to gB

T = cot
(ω

2
t
)
, X =

1

2 sin
(
ω
2 t
) (cos

(
f

2
t

)
x − sin

(
f

2
t

)
y

)
,

H = Ch sin
(ω

2
t
)2

, Y = − 1

2 sin
(
ω
2 t
) (sin

(
f

2
t

)
x + cos

(
f

2
t

)
y

)
,

U =
1

2ω

(
−2 sin

(
ω
2 t
)

cos
(
f
2 t
)
u + 2 sin

(
ω
2 t
)

sin
(
f
2 t
)
v+

+
(
sin
(
ω
2 t
)

sin
(
f
2 t
)
f + cos

(
f
2 t
)

cos
(
ω
2 t
)
ω
)
x+ (5)

+
(
sin
(
ω
2 t
)

cos ( f
2
t) f − sin

(
f
2 t
)

cos
(
ω
2 t
)
ω
)
y
)
,

V =
1

2ω

(
2 sin

(
ω
2 t
)

sin
(
f
2 t
)
u + 2 sin

(
ω
2 t
)

cos
(
f
2 t
)
v+

+
(
sin
(
ω
2 t
)

cos
(
f
2 t
)
f − sin

(
f
2 t
)

cos
(
ω
2 t
)
ω
)
x−

−
(
sin
(
ω
2 t
)

sin
(
f
2 t
)
f + cos

(
f
2 t
)

cos
(
ω
2 t
)
ω
)
y
)
,

where C is an integration constant.
L. Snobl and P. Winternitz Classification and Identification of Lie Algebras



Equivalence of the two shallow water equations

What is more, for a particular choice of the parameter C , namely

C =
1

ω2
,

the two shallow water equations (1) and (2) are mapped one into
the other by the change of dependent and independent variables
(5). Thus, mathematically they are locally equivalent although
their physical interpretation is different; any solution of one of
them gives rise to a (local) solution of the other. This equivalence
of equations (1) and (2) would be very difficult, if not impossible,
to discover without understanding the structure of the two Lie
algebras involved.
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Basic concepts and notation

Lie algebra g is a vector space V equipped by an antisymmetric
bilinear bracket

[ , ] : V × V → V

such that Jacobi identity holds[
x , [y , z ]

]
+
[
y , [z , x ]

]
+
[
z , [x , y ]

]
= 0, ∀x , y , z ∈ V . (6)

From now on we shall assume that the underlying vector space V
is over the field of real or complex numbers. In addition, we shall
identify the vector space and the algebra, V ' g.
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Basic concepts and notation, cont’d

A subalgebra h of the Lie algebra g is a vector subspace of g which
is closed under the bracket,

[h, h] ⊆ h. (7)

An ideal i of the Lie algebra g is a subalgebra such that

[i, g] ⊆ i. (8)

The Lie algebra g itself and {0} are trivial ideals. A Lie algebra
which does not possess any nontrivial ideal and has dimension
strictly greater than 1 is called simple.
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Characteristic series

Three series of ideals – characteristic series of g:

derived series g = g(0) ⊇ . . . ⊇ g(k) ⊇ . . . defined

g(k) = [g(k−1), g(k−1)], g(0) = g.

If ∃k ∈ N such that g(k) = 0, then g is solvable.
lower central series g = g1 ⊇ . . . ⊇ gk ⊇ . . . defined

gk = [gk−1, g], g1 = g.

If ∃k ∈ N such that gk = 0, then g nilpotent. The largest
value of K s.t. gK 6= 0 is the degree of nilpotency.
upper central series z1 ⊆ . . . ⊆ zk ⊆ . . . ⊆ g where z1 is the
center of g, z1 = C (g) = {x ∈ g|[x , y ] = 0, ∀y ∈ g}
and zk are the higher centers defined recursively through

zk+1/zk = C (g/zk).

For nilpotent Lie algebras exists a number l such that zl = g.
L. Snobl and P. Winternitz Classification and Identification of Lie Algebras



Centralizer, normalizer

Any Lie algebra g has a uniquely defined radical R(g), i.e. the
maximal solvable ideal, and nilradical NR(g), i.e. the maximal
nilpotent ideal. Their uniqueness follows from the observation that
sum of two solvable (nilpotent) ideals is again a solvable
(nilpotent) ideal, respectively.

The centralizer centg(h) of a given subalgebra h ⊆ g in g is the set
of all elements in g commuting with all elements in h, i.e.,

centg(h) = {x ∈ g | [x , y ] = 0, ∀y ∈ h}. (9)

The normalizer normg(h) of a given subspace h ⊆ g in g is the set
of all elements x in g such that [x , h] is in the subspace h for any
h ∈ h, i.e.,

normg(h) = {x ∈ g | [x , y ] ∈ h, ∀y ∈ h}. (10)

The normalizer of an ideal in g is the whole algebra g.
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Representations

A representation ρ of a given Lie algebra g on a vector space V is
a linear map of g into the space L (V ) of linear operators acting
on V

ρ : g→ L (V ) : x → ρ(x)

such that for any pair x , y of elements of g

ρ([x , y ]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x) (11)

holds. When the map ρ is injective, the representation is called
faithful.
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Representations, cont’d

A subspace W of V is called invariant if

ρ(g)W = {ρ(x)w | x ∈ g,w ∈W } ⊆W .

A representation ρ of g on V is

reducible if a proper nonvanishing invariant subspace W of V
exists,

irreducible if no nontrivial invariant subspace of V exists,

fully reducible when every invariant subspace W of V has an
invariant complement W̃ , i.e.,

V = W ⊕ W̃ , ρ(g)W̃ ⊆ W̃ . (12)

L. Snobl and P. Winternitz Classification and Identification of Lie Algebras



Representations, Schur lemma

An important criterion for irreducibility of a given representation is

Theorem 1 (Schur lemma)

Let g be a complex Lie algebra and ρ its representation on a
finite-dimensional vector space V .

Let ρ be irreducible. Then any operator A on V which
commutes with all ρ(x),

[A, ρ(x)] = 0, ∀x ∈ g,

has the form A = λ1 for some complex number λ.

Let ρ be fully reducible and such that every operator A on V
which commutes with all ρ(x) has the form A = λ1 for some
complex number λ. Then ρ is irreducible.
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Adjoint representation

A particular representation is defined for any Lie algebra g, namely
the adjoint representation of a given Lie algebra g is a linear map
of g into the space of linear operators acting on g

ad : g→ L (g) : x → ad(x)

defined for any pair x , y of elements of g via

ad(x) y = [x , y ]. (13)

The image of ad is denoted by adg.
The following theorem allows us to express nilpotency of a given
algebra in terms of operators in the adjoint representation.

Theorem 2 (Engel theorem)

A Lie algebra g is nilpotent if and only if k ∈ N exists such that(
ad(x)

)k
= 0 for all x ∈ g, i.e., if all ad(x) are nilpotent operators

on g.
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Lie theorem

Similarly, the solvability of a given complex algebra can be
formulated in terms of operators representing it in any faithful
representation.

Theorem 3 (Lie theorem)

Let g be a Lie algebra and ρ its faithful representation on a
complex vector space V , n = dimV . The algebra g is solvable if
and only if a filtration of V by codimension 1 subspaces (Vk)nk=1

invariant with respect to the representation ρ exists, i.e.,

0 ( V1 ( V2 ( · · · ( Vn ≡ V , (14)

ρ(g)Vk ⊂ Vk .

When the representation ρ is chosen to be the adjoint
representation, the statement of the Lie theorem holds even when
it is not faithful.
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Relation between radical and nilradical

As a direct consequence of the Engel and Lie theorems we find
that we have

D
(
R(g)

)
= [R(g),R(g)] ⊆ NR(g). (15)

and moreover
[R(g), g] ⊆ NR(g).
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Derivation

A derivation D of a given Lie algebra g is a linear map

D : g→ g

such that for any pair x , y of elements of g

D([x , y ]) = [D(x), y ] + [x ,D(y)]. (16)

If an element z ∈ g exists, such that

D = adz , i.e. D(x) = [z , x ], ∀x ∈ G ,

the derivation is inner, any other one is outer.
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Automorphism

An automorphism Φ of g is a regular linear map

Φ : g→ g

such that for any pair x , y of elements of g

Φ([x , y ]) = [Φ(x),Φ(y)]. (17)

Ideals invariant with respect to all automorphisms (and thus also
w.r.t. derivations) are called characteristic. E.g. ideals in the
characteristic series and their centralizers are characteristic ideals.
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Summary

We have introduced the intended goal of this lecture series,

we have given a detailed example demonstrating the relevance
of Lie algebra theory to practical computations in
mathematical physics,

and we have introduced some of the basic notions that will be
used throughout the lectures.
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Semisimple vs. simple Lie algebras

A Lie algebra g is semisimple if its radical R(g) vanishes.
Equivalently, g possesses no nonvanishing Abelian ideal. Using

Theorem 1 (Cartan’s criteria)

A Lie algebra g is

semisimple if and only if its Killing form K

K (x , y) = Tr
(
ad(x) ad(y)

)
.

is nondegenerate;

solvable if and only if the restriction of its Killing form to the
derived algebra vanishes.

one finds that any semisimple Lie algebra is a direct sum of its
simple ideals. Thus, the classification of semisimple Lie algebras
follows immediately from the classification of simple ones.
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Cartan subalgebra

Let us briefly review the standard results concerning the
classification of simple and semisimple Lie algebras. This
classification belongs to the greatest achievements in the theory of
Lie algebras. These results were originally obtained by W. Killing
and É. Cartan.

Let g be a complex Lie algebra. Any nilpotent subalgebra g0 of g
coinciding with its normalizer normg(g0) is called a Cartan
subalgebra. It can be constructed in the following way.

Let x ∈ g. Consider the linear operator ad(x) ∈ L (g) and find its
generalized nullspace

g0(x) = lim
k→∞

ker
(
ad(x)

)k
. (1)

When dim g0(x) is minimal, i.e., dim g0(x) = miny∈g dim g0(y), we
call the element x ∈ g regular.
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Cartan subalgebra, cont’d

Theorem 2

Let x ∈ g be a regular element of the complex Lie algebra g. Then
g0(x) is a Cartan subalgebra of g. Any other Cartan subalgebra of
g is related to g0(x) by an automorphism of g.

Consequently, the dimension of the Cartan subalgebra g0(x) is
independent of the choice of the regular element x and is called
the rank of the Lie algebra g. We point out that the proposition
holds whether or not g is semisimple, i.e., any complex Lie algebra
has a Cartan subalgebra unique up to automorphisms. The
uniqueness is lost for real algebras; e.g., a finite number of distinct
Cartan subalgebras exists for each finite-dimensional semisimple Lie
algebra over R.
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Roots

Cartan subalgebras of semisimple algebras have special properties.
The Cartan subalgebra g0 of a semisimple Lie algebra is Abelian.
In addition, all elements of the Cartan subalgebra are
ad-diagonalizable or semisimple, meaning that ad(h) ∈ gl(g) is
diagonalizable for every h ∈ g0. Therefore, there exist common
eigenspaces gλ ⊂ g of all operators ad(h), h ∈ g0 and
nonvanishing functionals λ ∈ g∗0 such that

ad(h)eλ = λ(h) · eλ, h ∈ g0, eλ ∈ gλ (2)

(where g∗0 is the dual space of the vector space g0.) These
functionals λ are called roots of the semisimple Lie algebra g. The
collection of all roots is called the root system of the algebra g and
denoted by ∆. The diagonalizability of ad(h) implies that

g = g0 u
(
u{gλ | λ ∈ ∆}

)
where u stands for a direct sum of vector spaces.
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Positive and simple roots

It is always possible to introduce an ordering among the roots via a
choice of h0 ∈ g0 such that λ(h0) 6= 0 and λ(h0) ∈ R for all roots
λ. This ordering is not unique but different choices give results
equivalent up to automorphism of g. For any pair of roots λ, κ one
writes λ > κ if and only if λ(h0) > κ(h0). Similarly one defines
positive roots λ > 0, i.e., λ(h0) > 0 and negative roots λ < 0, i.e.,
λ(h0) < 0. The set of all positive roots is denoted ∆+, the set of
negative roots ∆−. We have ∆ = ∆+ ∪∆−. Simple roots are
positive roots which cannot be written as a sum of two positive
roots. We denote the set of all simple roots by ∆S .
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Properties of the root systems of semisimple algebras

We list the most important properties of the root system ∆ and
root subspaces gλ of a semisimple complex Lie algebra g as a
review. Their derivation can be found in any standard introductory
course on Lie algebras.

1 The Killing form K of g when restricted to g0 × g0 is
nondegenerate.

2 To any functional λ ∈ g∗0 we can associate a unique element
hλ ∈ g0 such that

λ(h) = K (hλ, h), ∀h ∈ g0 (3)

and we can define a nondegenerate bilinear symmetric form
〈 , 〉 on g∗0 so that

〈λ, κ〉 = K (hλ, hκ), ∀λ, κ ∈ g∗0.
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Properties of the root systems of semisimple algebras,
cont’d

3 If λ is a root then so is −λ and no other multiple of λ is a
root.

4 All root subspaces gλ are 1-dimensional.

5 [gλ, gκ] = gλ+κ whenever λ, κ and λ+ κ are roots.

6 When λ+ κ is neither 0 nor a root we have [gλ, gκ] = 0.

7 [gλ, g−λ] ⊂ g0.

8 There is a basis of g consisting of elements of the Cartan
subalgebra g0 and of the root subspaces gλ such that the
structure constants of g in this basis are integers; such a basis
is called the Weyl–Chevalley basis of g and the real form of
the Lie algebra g corresponding to this choice of basis is called
the split real form of g.

9 Simple roots are linearly independent.
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Properties of the root systems of semisimple algebras,
cont’d

10 Any positive root is a linear combination of simple roots with
nonnegative integer coefficients; therefore, the root system ∆
is contained in the real subspace of g∗0 spanned by the simple
roots, we denote this subspace by h∗.

11 〈 , 〉 defines a real scalar product on h∗.

12 The whole Lie algebra g is obtained by multiple Lie brackets
of root vectors eα where α ∈ ∆S or −α ∈ ∆S .

13 The root system ∆ is invariant under all reflections

Sλ(α) = α− 2
〈α, λ〉
〈λ, λ〉

λ, λ, α ∈ ∆; (4)

all such reflections generate a finite group called the Weyl
group of the root system ∆.

14 Any root is an image of some simple root under the action of
an element of the Weyl group; thus, it has the same length.
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Cartan matrix

It turns out that the structure of a semisimple complex Lie algebra
is fully determined up to isomorphism by angles and relative lengths
of its simple roots in the Euclidean space h∗. This information is
usually encoded either in the Cartan matrix A = (aκλ)

aκλ = 2
〈κ, λ〉
〈λ, λ〉

, κ, λ ∈ ∆S (5)

or equivalently in Dynkin diagrams. The Cartan matrix has only
integer entries: 2 on the diagonal, 0,−1,−2,−3 off the diagonal
since

〈κ, λ〉 ≤ 0, aκλaλκ = 4
|〈κ, λ〉|2

〈λ, λ〉〈κ, κ〉
= 4 cos^(κ, λ), κ 6= λ.
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Dynkin diagram

The Dynkin diagram associated with the Cartan matrix is a graph
with vertices corresponding to the simple roots where the number
of edges connecting the vertices labelled by κ and λ is equal to
aκλaλκ ∈ {0, 1, 2, 3}. Further, one distinguishes graphically
between shorter and longer roots either by different symbols for
vertices or different types of arrows connecting vertices. We shall
use a convention that the arrow goes from the longer root to the
shorter one, e.g., a subdiagram of the formu u〉

κ λ

implies the following values of the elements of the Cartan matrix

aκλ = 2
〈κ, λ〉
〈λ, λ〉

= −2, aλκ = 2
〈λ, κ〉
〈κ, κ〉

= −1.

Classification and Identification of Lie Algebras



Classification of root systems

The structure of any root system can be shown to be such that:

1 Simple components gk of a semisimple Lie algebra g
correspond to connected subdiagrams of the Dynkin diagram
of g.

2 There are no closed loops in Dynkin diagrams.

3 A connected Dynkin diagram is either simply laced meaning
that it contains only simple edges and consequently all roots
are of the same length, or the corresponding root system
contains roots of precisely two different lengths.

The fundamental classification result is due to W. Killing and
É. Cartan whose computations were later significantly simplified by
E. Dynkin using his diagrammatic approach. The result is the
following list of possible connected diagrams and their
corresponding simple algebras.
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Classification of root systems - Dynkin diagrams of simple
Lie algebras

Al : u u u u u· · ·
α1 α2 α3 αl−1 αl

Bl : u u u u u· · · 〉
α1 α2 αl−2 αl−1 αl

Cl : u u u u u· · · 〈
α1 α2 αl−2 αl−1 αl

Dl : u u u uu u· · ·
α1 α2 αl−3 αl−2

αl−1

αl
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Classification of root systems - Dynkin diagrams of simple
Lie algebras, cont’d

E6: u u uu u u
α1 α2 α3 α4

α6

α5

E7: u u uu u u u
α1 α2 α3 α4

α7

α5 α6

E8: u u uu u u u u
α1 α2 α3 α4

α8

α5 α6 α7

F4: u u u u〉
α1 α2 α3 α4

G2: u u〉
α1 α2
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Classification of complex simple Lie algebras

Any finite-dimensional complex simple Lie algebra g either belongs
to one of the classical series of simple Lie algebras, or is one of the
exceptional simple Lie algebras. The classical Lie algebras are

sl(l + 1,C) of rank l ≥ 1, also denoted Al , the algebra of
traceless (l + 1)× (l + 1) matrices,

so(2l + 1,C) of rank l ≥ 2, also denoted Bl , the algebra of
skew-symmetric (2l + 1)× (2l + 1) matrices,

sp(2l ,C) of rank l ≥ 3, also denoted Cl , the algebra of
2l × 2l matrices skew-symmetric with respect to a
nondegenerate antisymmetric form on C2l ,

so(2l ,C) of rank l ≥ 4, also denoted Dl , the algebra of
skew-symmetric 2l × 2l matrices.

The five exceptional algebras are denoted by E6, E7, E8, F4, G2.
Out of these algebras, the algebras Al , Dl , E6, E7, E8 are simply
laced.
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Summary

We have introduced the notions of Cartan subalgebra and
root system, and

employed them in the complete classification of semisimple
complex Lie algebras.
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Casimir operators and generalized Casimir invariants

The term Casimir operator, or Casimir invariant, of a Lie algebra g
is usually reserved for elements of the center of the enveloping
algebra of the Lie algebra g. These elements should be
algebraically independent so that all other elements of the center
of the enveloping algebra are appropriately symmetrized
polynomials in the given ones. The Casimir operators are in 1-to-1
correspondence with polynomial invariants characterizing orbits of
the coadjoint representation of g.

In general, invariants of the coadjoint representation of a Lie
algebra are not necessarily polynomials and we shall call these
nonpolynomial invariants generalized Casimir invariants. On the
other hand, for certain classes of Lie algebras their invariants can
be expressed in a particular form. E.g., for perfect Lie algebras
including semisimple ones and for nilpotent Lie algebras, all
invariants of the coadjoint representation are functions of
polynomial ones.



Casimir operators and generalized Casimir invariants,
cont’d

Casimir invariants are of primordial importance in physics. They
represent such important quantities as angular momentum,
elementary particle mass and spin, Hamiltonians of various physical
systems, etc. The same can be said of generalized Casimir
invariants. Indeed, Hamiltonians and integrals of motion for
physical systems are not necessarily polynomials in the momenta,
though typically they are invariants of some group action.

Essentially two methods of calculating Casimir and generalized
Casimir invariants exist and both of them are based on the
calculation of invariants of the coadjoint representation. The first
method is an infinitesimal one and amounts to solving a system of
first order linear partial differential equations. The second method
is more global in nature; it uses the (local) action of the Lie group
G corresponding to the Lie algebra g. It is an application of
Cartan’s method of moving frames and its modern formulation is
due to M. Fels and P. Olver.



Formulation of the problem

In order to calculate the (generalized) Casimir invariants we
consider some basis (x1, . . . , xn) of g, in which the structure
constants are cij

k . A basis for the coadjoint representation is given
by the vector fields,

X̂k =
n∑

a,b=1

xbcka
b ∂

∂xa
, 1 ≤ k ≤ n. (1)

In (1) the quantities xa are commuting independent variables
which can be identified with coordinates in the dual basis of the
space g∗, dual to the algebra g. (Recall that there is a canonical
isomorphism ι between any finite dimensional vector space V and
its double dual (V ∗)∗, defined through the relation

ι(v)(α) = α(v)

for any v ∈ V and all α ∈ V ∗).



Generalized Casimir invariants

The invariants of the coadjoint representation, i.e., the generalized
Casimir invariants, are solutions of the following system of partial
differential equations

X̂k I (x1, . . . , xn) = 0, k = 1, . . . , n. (2)

Let us first determine the number of functionally independent
solutions of the system (2). We can rewrite this system as

C · ∇I = 0 (3)

where C is the antisymmetric matrix

C =


0 c12

bxb . . . c1n
bxb

−c12
bxb 0 . . . c2n

bxb
...

...
−c1,n−1

bxb . . . 0 cn−1,n
bxb

−c1n
bxb . . . −cn−1,n

bxb 0

 (4)

in which summation over the repeated index b is to be understood
in each term and ∇ is the gradient operator ∇ = (∂x1 , . . . , ∂xn)T .



Number of generalized Casimir invariants

The number of independent equations in the system (2) is r(C ),
the generic rank of the matrix C . The number of functionally
independent solutions of the system (2) is hence

nI = n − r(C ). (5)

Since C is antisymmetric, its rank is even. It follows that nI has
the same parity as n. Equation (5) gives the number of
functionally independent generalized Casimir invariants. The
individual equations in the system of partial differential equations
(PDEs) (2) can be solved by the method of characteristics, or
equivalently by integration of the vector fields (1).



Method of characteristics

The method of characteristics is applicable to a linear
homogeneous first-order PDE

n∑
k=0

f k(x1, . . . , xn)
∂

∂xk
u(x1, . . . , xn) = 0 (6)

for an unknown function u. Instead of attempting to solve (6)
directly, we can consider an associated systems of ODEs

dx̃k(t)

dt
= f k

(
x̃1(t), . . . , x̃n(t)

)
, 1 ≤ k ≤ n (7)

and find its solution satisfying a generic initial condition

x̃k(0) = xk , 1 ≤ k ≤ n. (8)



Method of characteristics, cont’d

In the language of differential geometry that means that we are
constructing the flow, i.e., the collection of all integral curves, of
the vector field

F̂ =
n∑

j=0

f a(x1, . . . , xn)
∂

∂xa
. (9)

Once the integral curves, i.e., solutions of (7), are known, we
construct functionally independent functions which are constant
along the integral curves in the following way. We choose a
hypersurface in Rn such that it is transversal to all integral curves
(this is often done only locally). We associate to every integral
curve its intersection with the chosen hypersurface. The
coordinates of that point of intersection are invariants of the vector
field F̂ , i.e., solutions of (6), because they are by construction the
same for any pair of points connected by an integral curve of F̂
and consequently are annihilated by the vector field.



Method of characteristics, cont’d

For the sake of the argument let us assume that the hypersurface is
expressed in our coordinates as the hyperplane x1 = 1. Let us take
(x1, . . . , xn) as the initial condition (8). We determine the value of
the curve parameter t(x1, . . . , xn) such that x̃

(
t(x1, . . . , xn)

)
lies

on the hyperplane x1 = 1, i.e., x̃1

(
t(x1, . . . , xn)

)
= 1. The

remaining n − 1 coordinates x̃k
(
t(x1, . . . , xn)

)
, 2 ≤ k ≤ n of the

intersection of the integral curve with the hyperplane x1 = 1 are
invariants of the vector field (9)

Ik(x1, . . . , xn) = x̃k+1

(
t(x1, . . . , xn)

)
, 1 ≤ k ≤ n − 1.

They are by construction functionally independent.



Method of characteristics, cont’d

We remark that any invariant of the vector field F̂ is obviously also
an invariant of the vector field Ĝ = f F̂ for any smooth function
f : Rn → R. On the other hand, the integral curves of Ĝ differ
from those of F̂ by a reparameterization, i.e., the differential
equations (7) are different for Ĝ and for F̂ . Consequently, the
solution of the system of ODEs (7) can be often significantly
simplified through a suitable choice of the function f . This
independence of the invariants on the reparameterization of the
integral curves is symbolically depicted by rewriting of the
system (7) in the form

dx1

f 1(x1, . . . , xn)
=

dx2

f 2(x1, . . . , xn)
= · · · =

dxn
f n(x1, . . . , xn)

. (10)



Method of characteristics, example

Consider the vector field

F̂0 = x1 ∂x2 + · · ·+ xn−1 ∂xn . (11)

Equation (7) becomes

dx̃1(t)

dt
= 0,

dx̃k(t)

dt
= x̃k−1(t).

The integral curves are given by the formula

x̃1(t) = x1, x̃k(t) =
k−1∑
j=0

t j

j!
xk−j . (12)



Method of characteristics, example

In this case we cannot choose our hyperplane as x1 = 1 because x1

is constant along the integral curves (12). A convenient choice of
the hyperplane is x2 = 0 which implies

t = −x2

x1
. (13)

Substituting (13) into (12) we obtain the invariants

I1 = x1, Ĩk =
k−1∑
j=0

xk−j

j!
(−1)j

(
x2

x1

)j

, k = 3, . . . , n.

Multiplying Ĩk by the invariant (x1)k−1 and shifting the label k we
obtain the invariants in the form of homogeneous polynomials

I1 = x1, Ik =
k∑

j=0

(−1)j

j!
xk−1−j

1 x j2 xk+1−j , 2 ≤ k ≤ n − 1.

(14)



Solution of the system of PDEs (2) for generalized Casimir
invariants

Let us now assume that one of the equations of the system (2) has
been solved by the method of characteristics, i.e., we already know
the n − 1 invariants Ik of the first vector field X̂1. Next, we
transform all remaining vector fields to a new set of coordinates

(x1, . . . , xn)→ (I1, . . . , In−1, s) (15)

where s is a coordinate along the integral curves of X̂1. We obtain

X̂1 =
∂

∂s
,

X̂k =
n−1∑
c=1

φck(I1, . . . , In−1, s)
∂

∂Ic
+ φsk(I1, . . . , In−1, s)

∂

∂s
,

φck =
n∑

a,b=1

xbc
b
ka

∂Ic
∂xa

, 2 ≤ k ≤ n.

(16)



Solution of the system of PDEs (2), cont’d

Any function J of I1, . . . , In−1 is an invariant of the vector field X̂1.
For J to be an invariant of the entire Lie algebra it must be a
solution of the system of equations

n−1∑
c=1

φck(I1, . . . , In−1, s)
∂J

∂Ic
= 0, 2 ≤ k ≤ n (17)

for all values of the noninvariant parameter s. Since the vector
fields X̂k , 1 ≤ k ≤ n span a Lie algebra, that is an integrable
distribution in the sense of the Frobenius theorem, the system (17)
is compatible. It will have precisely nI functionally independent
solutions, as stated in (5).



Solution of the system of PDEs (2), cont’d

We can continue by solving another chosen equation of the
system (17) using the method of characteristics. In this way we
may be able to fully solve the system (2) equation by equation.
However after the first step, i.e., the substitution of invariants of
the first vector field X̂1 into the system, the vector fields no longer
have linear coefficients. Consequently, it may be difficult or indeed
impossible to find the solution in closed form.



Calculation of generalized Casimir invariants by the
method of moving frames

An alternative method of calculation is the method of moving
frames. It can be roughly divided into the following steps.

Step 1

Integration of the coadjoint action of the Lie algebra g on its dual
g∗ as given by the vector fields (1) to the (local) action of the
group G .

This is usually realized by choosing a convenient (local)
parameterization of G in terms of one-parameter subgroups, e.g.,

g(~α) = exp(αNxN)·· · ··exp(α2x2)·exp(α1x1) ∈ G , ~α = (α1, . . . , αN)
(18)

and correspondingly composing the flows Ψαk

X̂k
of X̂k defined in (1)

dΨαk

X̂k
(p)

dαk
= X̂k

(
Ψαk

X̂k
(p)
)
, p ∈ g∗. (19)



Method of moving frames, cont’d

Thus, we have

Ψ(g(~α)) = ΨαN

X̂N
◦ · · · ◦Ψα2

X̂2
◦Ψα1

X̂1
. (20)

For a given point p ∈ g∗ with coordinates xk = xk(p),
~x = (x1, . . . , xN) we denote the coordinates of the transformed
point Ψ(g(~α))p by x̃k

x̃k ≡ Ψk(~α)(~x) = xk
(
Ψ
(
g(~α)

)
p
)
. (21)

We consider x̃k to be a function of both the group parameters ~α
and the coordinates ~x of the original point p.



Method of moving frames, cont’d

Step 2

Choice of a section cutting through the orbits of the action Ψ.

We choose in a smooth way a single point on each of the (generic)
orbits of the action of the group G . Typically this is done as
follows: we find a subset of r coordinates, say (xπ(i))ri=1, on which
the group G acts transitively, at least locally in an open
neighborhood of chosen values (x0

π(i))ri=1. Here π denotes a

suitable injection π : {1, . . . , r} → {1, . . . ,N} and r is the rank of
the matrix C in (4). Points whose coordinates satisfy

xπ(i) = x0
π(i), 1 ≤ i ≤ r (22)

form our section Σ, intersecting each generic orbit once.



Method of moving frames, cont’d

Step 3

Construction of invariants.

For a given point p ∈ g∗ we find group elements transforming p
into p̃ ∈ Σ by the action Ψ. We express as many of their
parameters as possible (i.e., r of them) in terms of the original
coordinates ~x and substitute them back into (21). This gives us x̃k
as functions of ~x only. Out of them, x̃π(i), i = 1, . . . , r have the
prescribed fixed values x0

π(i). The remaining N − r functions x̃k are
by construction invariant under the coadjoint action of G , i.e.,
define the invariants of the coadjoint representation.

Technically, it may not be necessary to evaluate all the functions
x̃k so that a suitable choice of the basis in g can substantially
simplify the whole procedure.



Method of moving frames, cont’d

This happens when only a smaller subset of say r0 group
parameters αk enters into the computation of N − r + r0 functions
x̃k , k = 1, . . . ,N − r + r0 (possibly after a rearrangement of xk ’s).
In this case the remaining parameters can be ignored throughout
the computation since they do not enter into the expressions for
x̃k , 1 ≤ k ≤ N − r + r0 which define the invariants.

The method of moving frames exploits the fact that the flows can
be computed easily due to the linear dependence on the
coordinates in the coefficients of the vector fields (1). Thus the
problem is reduced to a choice of the section and the elimination
of the group parameters, i.e., to a system of algebraic equations.
Unfortunately, these equations may be difficult or impossible to
solve (and strongly depend on the choice of the section).



Example

Let us consider the Lie algebra g with the nonvanishing Lie brackets

[e2, e3] = e1, [e2, e4] = e3, [e3, e4] = −e2. (23)

The vector fields (1) are

Ê1 = 0, Ê2 = e1∂e3 + e3∂e4 ,

Ê3 = −e1∂e2 − e2∂e4 , Ê4 = −e3∂e2 + e2∂e3 .
(24)

Consequently, the matrix C takes the form

C =


0 0 0 0
0 0 e1 e3

0 −e1 0 −e2

0 −e3 e2 0

 . (25)



Example, cont’d

The generic rank of C is 2 and the number (5) of functionally
independent Casimir invariants is nI = 4− 2 = 2. Since the first
column of C consists of zeros, e1 is a solution. We take Ê2 as the
first vector field to which we apply the method of characteristics.
We have

de3

e1
=

de4

e3
,

the invariants of Ê2 are e1, e2 and ξ = e2
3 − 2e1e4. Any invariant

must take the form J = J(e1, e2, ξ). Applying Ê3 to J we find

Ê3J = e1

(
2e2

∂J

∂ξ
− ∂J

∂e2

)
(26)

and we obtain two independent solution of Ê3J = 0 in the form
η = e2

2 + e2
3 − 2e1e4 and e1. Both e1 and η are annihilated by Ê4.

Altogether, we have found that our algebra has 2 Casimir invariants

I1 = e1, I2 = e2
2 + e2

3 − 2e1e4. (27)



Example, using the method of moving frames

The flows of the vector fields Ê1, . . . , Ê4 are

Ψα1

Ê1
(e1, e2, e3, e4) = (e1, e2, e3, e4),

Ψα2

Ê2
(e1, e2, e3, e4) =

(
e1, e2, α2e1 + e3,

α2
2

2
e1 + α2e3 + e4

)
,

Ψα3

Ê3
(e1, e2, e3, e4) =

(
e1,−α3e1 + e2, e3,

α2
3

2
e1 − α3e2 + e4

)
,

Ψα4

Ê4
(e1, e2, e3, e4) = (e1, e2 cosα4 − e3 sinα4, e2 sinα4 + e3 cosα4, e4).

We compose the flows as in (20) and obtain

Ψ
(
g(α1, α2, α3, α4)

)
=Ψα4

Ê4
◦ Ψα3

Ê3
◦ Ψα2

Ê2
◦ Ψα1

Ê1
,

Ψ
(
g(α1, α2, α3, α4)

)
(e1, e2, e3, e4) =

(
e1, cosα4(−α3e1 + e2) − sinα4(α2e1 + e3),

sinα4(−α3e1 + e2) + cosα4(α2e1 + e3),
α2

2 + α2
3

2
e1 − α3e2 + α2e3 + e4

)
.



Example, using the method of moving frames, cont’d

We choose a section Σ given by the equations

e2 = 0, e3 = 1. (28)

The intersection of our section Σ with the orbit
Ψ(g(α1, α2, α3, α4))(e1, e2, e3, e4) starting from the point
(e1, e2, e3, e4) has the following values of α2, α3

α2 =
cosα4 − e3

e1
, α3 =

e2 − sinα4

e1
(29)

(generically, i.e., when e1 6= 0).



Example, using the method of moving frames, cont’d

The coordinates of the intersection(
e1, 0, 1,

2e1e4 − e2
2 − e2

3 + 1

2e1

)
. (30)

are independent of the remaining two parameters α1, α4. That
means that we have found using the method of moving frames
that two functionally independent functions

e1, (2e1e4 − e2
2 − e2

3 + 1)/(2e1)

are generalized Casimir invariants. Equivalently, taking functional
combinations we find that

I1 = e1, I2 = e2
2 + e2

3 − 2e1e4

of (27) are Casimir invariants.



Summary

We have defined invariants of the coadjoint representation,
a.k.a. generalized Casimir invariants,

we have presented two methods of their determination,
namely the direct method using the method of characteristics
repeatedly, and the method of moving frames, and

we have illustrated both methods on an example.
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Reminder: Casimir invariants

In order to calculate the (generalized) Casimir invariants we
consider some basis (x1, . . . , xn) of g, in which the structure
constants are cij

k . A basis for the coadjoint representation is given
by the vector fields,

X̂k =
n∑

a,b=1

xbcka
b ∂

∂xa
, 1 ≤ k ≤ n. (1)

In (1) the quantities xa are commuting independent variables
which can be identified with coordinates in the dual basis of the
space g∗, dual to the algebra g.
The invariants of the coadjoint representation, i.e., the generalized
Casimir invariants, are solutions of the following system of partial
differential equations

X̂k I (x1, . . . , xn) = 0, k = 1, . . . , n. (2)



Solution of the system of PDEs (2) for generalized Casimir
invariants

Let us now assume that one of the equations of the system (2) has
been solved by the method of characteristics, i.e., we already know
the n − 1 invariants Ik of the first vector field X̂1. Next, we
transform all remaining vector fields to a new set of coordinates

(x1, . . . , xn)→ (I1, . . . , In−1, s) (3)

where s is a coordinate along the integral curves of X̂1. We obtain

X̂1 =
∂

∂s
,

X̂k =
n−1∑
c=1

φck(I1, . . . , In−1, s)
∂

∂Ic
+ φsk(I1, . . . , In−1, s)

∂

∂s
,

φck =
n∑

a,b=1

xbc
b
ka

∂Ic
∂xa

, 2 ≤ k ≤ n.

(4)



Solution of the system of PDEs (2), cont’d

Any function J of I1, . . . , In−1 is an invariant of the vector field X̂1.
For J to be an invariant of the entire Lie algebra it must be a
solution of the system of equations

n−1∑
c=1

φck(I1, . . . , In−1, s)
∂J

∂Ic
= 0, 2 ≤ k ≤ n (5)

for all values of the noninvariant parameter s. Since the vector
fields X̂k , 1 ≤ k ≤ n span a Lie algebra, that is an integrable
distribution in the sense of the Frobenius theorem, the system (5)
is compatible. It will have precisely nI functionally independent
solutions, as stated in (??).



Solution of the system of PDEs (2), cont’d

We can continue by solving another chosen equation of the
system (5) using the method of characteristics. In this way we may
be able to fully solve the system (2) equation by equation.
However after the first step, i.e., the substitution of invariants of
the first vector field X̂1 into the system, the vector fields no longer
have linear coefficients. Consequently, it may be difficult or indeed
impossible to find the solution in closed form.



Calculation of generalized Casimir invariants by the
method of moving frames

An alternative method of calculation is the method of moving
frames. It can be roughly divided into the following steps.

Step 1

Integration of the coadjoint action of the Lie algebra g on its dual
g∗ as given by the vector fields (1) to the (local) action of the
group G .

This is usually realized by choosing a convenient (local)
parameterization of G in terms of one-parameter subgroups, e.g.,

g(~α) = exp(αNxN)·· · ··exp(α2x2)·exp(α1x1) ∈ G , ~α = (α1, . . . , αN)
(6)

and correspondingly composing the flows Ψαk

X̂k
of X̂k defined in (1)

dΨαk

X̂k
(p)

dαk
= X̂k

(
Ψαk

X̂k
(p)
)
, p ∈ g∗. (7)



Method of moving frames, cont’d

Thus, we have

Ψ(g(~α)) = ΨαN

X̂N
◦ · · · ◦Ψα2

X̂2
◦Ψα1

X̂1
. (8)

For a given point p ∈ g∗ with coordinates xk = xk(p),
~x = (x1, . . . , xN) we denote the coordinates of the transformed
point Ψ(g(~α))p by x̃k

x̃k ≡ Ψk(~α)(~x) = xk
(
Ψ
(
g(~α)

)
p
)
. (9)

We consider x̃k to be a function of both the group parameters ~α
and the coordinates ~x of the original point p.



Method of moving frames, cont’d

Step 2

Choice of a section cutting through the orbits of the action Ψ.

We choose in a smooth way a single point on each of the (generic)
orbits of the action of the group G . Typically this is done as
follows: we find a subset of r coordinates, say (xπ(i))ri=1, on which
the group G acts transitively, at least locally in an open
neighborhood of chosen values (x0

π(i))ri=1. Here π denotes a

suitable injection π : {1, . . . , r} → {1, . . . ,N} and r is the rank of
the matrix C in (??). Points whose coordinates satisfy

xπ(i) = x0
π(i), 1 ≤ i ≤ r (10)

form our section Σ, intersecting each generic orbit once.



Method of moving frames, cont’d

Step 3

Construction of invariants.

For a given point p ∈ g∗ we find group elements transforming p
into p̃ ∈ Σ by the action Ψ. We express as many of their
parameters as possible (i.e., r of them) in terms of the original
coordinates ~x and substitute them back into (9). This gives us x̃k
as functions of ~x only. Out of them, x̃π(i), i = 1, . . . , r have the
prescribed fixed values x0

π(i). The remaining N − r functions x̃k are
by construction invariant under the coadjoint action of G , i.e.,
define the invariants of the coadjoint representation.

Technically, it may not be necessary to evaluate all the functions
x̃k so that a suitable choice of the basis in g can substantially
simplify the whole procedure.



Method of moving frames, cont’d

This happens when only a smaller subset of say r0 group
parameters αk enters into the computation of N − r + r0 functions
x̃k , k = 1, . . . ,N − r + r0 (possibly after a rearrangement of xk ’s).
In this case the remaining parameters can be ignored throughout
the computation since they do not enter into the expressions for
x̃k , 1 ≤ k ≤ N − r + r0 which define the invariants.

The method of moving frames exploits the fact that the flows can
be computed easily due to the linear dependence on the
coordinates in the coefficients of the vector fields (1). Thus the
problem is reduced to a choice of the section and the elimination
of the group parameters, i.e., to a system of algebraic equations.
Unfortunately, these equations may be difficult or impossible to
solve (and strongly depend on the choice of the section).



Example

Let us consider the Lie algebra g with the nonvanishing Lie brackets

[e2, e3] = e1, [e2, e4] = e3, [e3, e4] = −e2. (11)

The vector fields (1) are

Ê1 = 0, Ê2 = e1∂e3 + e3∂e4 ,

Ê3 = −e1∂e2 − e2∂e4 , Ê4 = −e3∂e2 + e2∂e3 .
(12)

Consequently, the matrix C takes the form

C =


0 0 0 0
0 0 e1 e3

0 −e1 0 −e2

0 −e3 e2 0

 . (13)



Example, cont’d

The generic rank of C is 2 and the number (??) of functionally
independent Casimir invariants is nI = 4− 2 = 2. Since the first
column of C consists of zeros, e1 is a solution. We take Ê2 as the
first vector field to which we apply the method of characteristics.
We have

de3

e1
=

de4

e3
,

the invariants of Ê2 are e1, e2 and ξ = e2
3 − 2e1e4. Any invariant

must take the form J = J(e1, e2, ξ). Applying Ê3 to J we find

Ê3J = e1

(
2e2

∂J

∂ξ
− ∂J

∂e2

)
(14)

and we obtain two independent solution of Ê3J = 0 in the form
η = e2

2 + e2
3 − 2e1e4 and e1. Both e1 and η are annihilated by Ê4.

Altogether, we have found that our algebra has 2 Casimir invariants

I1 = e1, I2 = e2
2 + e2

3 − 2e1e4. (15)



Example, using the method of moving frames

The flows of the vector fields Ê1, . . . , Ê4 are

Ψα1

Ê1
(e1, e2, e3, e4) = (e1, e2, e3, e4),

Ψα2

Ê2
(e1, e2, e3, e4) =

(
e1, e2, α2e1 + e3,

α2
2

2
e1 + α2e3 + e4

)
,

Ψα3

Ê3
(e1, e2, e3, e4) =

(
e1,−α3e1 + e2, e3,

α2
3

2
e1 − α3e2 + e4

)
,

Ψα4

Ê4
(e1, e2, e3, e4) = (e1, e2 cosα4 − e3 sinα4, e2 sinα4 + e3 cosα4, e4).

We compose the flows as in (8) and obtain

Ψ
(
g(α1, α2, α3, α4)

)
=Ψα4

Ê4
◦ Ψα3

Ê3
◦ Ψα2

Ê2
◦ Ψα1

Ê1
,

Ψ
(
g(α1, α2, α3, α4)

)
(e1, e2, e3, e4) =

(
e1, cosα4(−α3e1 + e2) − sinα4(α2e1 + e3),

sinα4(−α3e1 + e2) + cosα4(α2e1 + e3),
α2

2 + α2
3

2
e1 − α3e2 + α2e3 + e4

)
.



Example, using the method of moving frames, cont’d

We choose a section Σ given by the equations

e2 = 0, e3 = 1. (16)

The intersection of our section Σ with the orbit
Ψ(g(α1, α2, α3, α4))(e1, e2, e3, e4) starting from the point
(e1, e2, e3, e4) has the following values of α2, α3

α2 =
cosα4 − e3

e1
, α3 =

e2 − sinα4

e1
(17)

(generically, i.e., when e1 6= 0).



Example, using the method of moving frames, cont’d

The coordinates of the intersection(
e1, 0, 1,

2e1e4 − e2
2 − e2

3 + 1

2e1

)
. (18)

are independent of the remaining two parameters α1, α4. That
means that we have found using the method of moving frames
that two functionally independent functions

e1, (2e1e4 − e2
2 − e2

3 + 1)/(2e1)

are generalized Casimir invariants. Equivalently, taking functional
combinations we find that

I1 = e1, I2 = e2
2 + e2

3 − 2e1e4

of (15) are Casimir invariants.



Application of generalized Casimir invariants to the Lie
algebra identification

The invariants of the coadjoint representation belong among
important characteristics of any given Lie algebra. Their knowledge
may help us to distinguish Lie algebras whose nonequivalence may
be difficult to establish by other means, as the following example
shows.

Let us consider two real 6–dimensional solvable Lie algebras s1, s2

with the nonvanishing Lie brackets

s1 :

e1 e2 e3 e4 e5 e6

e1 0 0 0 0 0 −e1

e2 0 0 0 0 e2

e3 0 e2 e1 0

e4 0 e3 −e2 + e4

e5 0 −e5



Application of generalized Casimir invariants to the Lie
algebra identification, cont’d

s2 :

ẽ1 ẽ2 ẽ3 ẽ4 ẽ5 ẽ6

ẽ1 0 0 0 0 0 −ẽ2

ẽ2 0 0 0 0 ẽ1

ẽ3 0 ẽ2 ẽ1 0

ẽ4 0 ẽ3 ẽ5

ẽ5 0 −ẽ2 − ẽ4

These two algebras s1, s2 are real forms of a single complex Lie
algebra sC = C⊗ s1 ' C⊗ s2, related by a complex isomorphism

e1 = −ẽ1 − iẽ2, e2 =
iẽ1 + ẽ2

2
, e3 = −ẽ3, e4 =

i

4
ẽ1 −

ẽ4 + iẽ5

2
,

e5 = −1

2
ẽ1 + iẽ4 + ẽ5, e6 = −1

2
ẽ3 + iẽ6.



Application of generalized Casimir invariants to the Lie
algebra identification, cont’d

The question is whether they are equivalent also as real algebras,
i.e. a real homomorphism between them exists, or they define two
distinct real forms of sC.

A short calculation along the lines indicated above shows that their
independent generalized Casimir invariants can be written as

s1 : e1e2, e2
1 exp

(
e2

3 − 2e1e4 + 2e2e5

e1e2

)
,

s2 : ẽ2
1 + ẽ2

2 , (ẽ2
1 + ẽ2

2 ) arctan
ẽ2

ẽ1
− ẽ1ẽ2 − 2ẽ1ẽ4 + 2ẽ2ẽ5 + ẽ2

3 .

Since no real transformation can convert trigonometric functions
into exponentials and vice versa we immediately see that the
algebras s1, s2 cannot be isomorphic, i.e. they must define two
different real forms of sC.



Summary

We have presented two methods of their determination,
namely the direct method using the method of characteristics
repeatedly, and the method of moving frames, and

we have illustrated both methods on an example, and

we have shown an example of the use of Casimir invariants in
the problem of identification of the given Lie algebra.
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Identification of isomorphic algebras

We shall discuss the possible ways of identification of a given Lie
algebra in a known list of algebras. The methods explained here
can be used to demonstrate whether two given algebras are
isomorphic or not.

An obvious way of establishing the equivalence of two algebras is
an explicit construction of a change of basis which transforms the
structure constants between them. Such a task in general involves
a solution of a nonlinear set of equations.
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Identification of isomorphic algebras, cont’d

Namely, we have two algebras of dimension n spanned by (ei ) and
(ẽi ), respectively, given by their Lie brackets

[ei , ej ] = fij
kek , [ẽi , ẽj ] = gij

k ẽk

and look for a regular transformation A such that

ēi = ekA
k
i , [ēi , ēj ] = gij

k ēk (1)

which reduces to the set of n2(n− 1)/2 quadratic equations for the
components of Ak

i

Ak
i A

l
j fkl

m = gij
kAm

k , detA 6= 0. (2)

The algebras are by definition isomorphic if and only if such a
transformation exists. Unfortunately, the existence of a solution of
(2) is in general rather difficult to establish.
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Identification of isomorphic algebras, cont’d

Consequently one uses invariant, i.e., basis independent,
characteristics of Lie algebras in order to distinguish classes of
algebras which are mutually nonisomorphic. Examples of these are
dimensions of unique ideals, properties of the Killing form etc. In
the following we review some of them. For practical purposes we
split our discussion into two parts: elementary invariants, most of
which can be computed by hand once we write down the Lie
brackets, and more sophisticated invariants whose efficient
computation necessarily involves use of computer algebra systems
in all but the lowest dimensions.

The first, very rough, invariant characteristic which one should
establish is the type of the Lie algebra in question. Namely
whether it is indecomposable or decomposable; semisimple,
solvable or has a nontrivial Levi decomposition.
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Elementary invariants

The solvability and semisimplicity are easily established from
Cartan’s criteria. Namely, the algebra is semisimple if and only if
its Killing form is nondegenerate; the algebra is solvable if and only
if its Killing form restricted to the derived algebra vanishes. The
decomposability can be established by the algorithm described in
next lecture. The Levi decomposition into the radical and a
semisimple subalgebra can be performed as described in Lecture 7.
Both these algorithms are often realized on a computer since they
involve the factorization of polynomials and the solution of a
relatively large system of linear equations, respectively. The factors
obtained by either of these algorithms should themselves be
identified. For Levi decomposable algebras one also has to analyze
how the radical and semisimple subalgebra are combined together
since more than one nonequivalent possibility may exist.
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Dimensions of characteristic series

Another class of invariants which we have already encountered is
the dimension of ideals in the characteristic series of the Lie
algebra. We recall that we use the symbols DS, CS and US for
sets of integers denoting the dimensions of subalgebras in the
derived, lower central and upper central series, respectively.

These invariants are very easy to compute, essentially by inspection
of the Lie brackets. The amount of information they contain
depends strongly on the type of Lie algebra. They are useful for
nilpotent and solvable algebras but do not provide any information
for semisimple ones.
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Dimensions of characteristic series

One can of course analyze the structure of characteristic series in
more detail, e.g., identify the structure of each lower-dimensional
ideal contained in them by calculating its respective characteristic
series. This may provide more information in certain cases.
However, the equality of dimensions often implies that the algebraic
structure of the ideals is the same. The difference between
algebras then lies in different ways these ideals are arranged inside
the entire algebra and cannot be identified in this way.

When the algebra in question is solvable but not nilpotent we shall
identify its nilradical by the algorithm of Lecture 8. The (faithful)
representation of the solvable factor algebra g/C (g) on the
nilradical can provide further invariant characteristics, e.g., whether
the representation is completely reducible or not, what are the
dimensions of its invariant subspaces etc. This appears to be the
most straightforward way of identifying the given solvable algebra.
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Rank

The invariant of particular importance for simple and semisimple
algebras is the rank of the Lie algebra, i.e., the dimension of its
Cartan subalgebra. Its determination together with the dimension
of the algebra brings us very close to full identification of a simple
complex Lie algebra in the Cartan’s classification. The only
remaining ambiguity to be resolved is the differentiation between
Bl and Cl algebras, i.e., between so(2l + 1,C)) and sp(2l ,C).
Exceptionally, for l = 6 also E6 shares the same values of rank and
dimension with B6 and C6. The rank may provide nontrivial
information also for other nonnilpotent algebras.

N.B.: For a nilpotent algebra the Cartan subalgebra coincides with
the entire algebra and the term rank is often used for a different
property, namely for the dimension of the maximal tori of
derivations, i.e., maximal Abelian subalgebras of the algebra of
derivations consisting of semisimple elements.
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Dynkin diagram

For semisimple Lie algebras another well-known invariant is the
Dynkin diagram and other properties related to the structure of the
simple roots. For example, in order to distinguish Bl and Cl

algebras given in an arbitrary basis one may find the Cartan
subalgebra, construct the corresponding root system, identify the
simple roots and consider their relative lengths. In the case of Bl

one of the simple roots is shorter than the rest, Cl has one longer
simple root. E6 has all the simple roots of the same lengths.
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Casimir invariants

Several invariant properties can be extracted also from the
invariants of coadjoint representation, i.e., generalized Casimir
invariants. An obvious invariant property is the number of
functionally independent generalized Casimir invariants.

Another possibility available for solvable and Levi decomposable Lie
algebras is the maximal number of proper, i.e., polynomial, Casimir
invariants. For semisimple and nilpotent algebras it coincides with
the total number of independent generalized Casimir invariants.

Under certain assumptions about the chosen basis of Casimir
invariants we can go even further. Provided we choose the lowest
degree polynomials as the generators, their degrees become further
invariant characteristics of the given Lie algebra g. Indeed a
change of basis in g induces a linear transformation of the
functionals e1, . . . , en which does not change the degrees of
polynomials expressed in terms of them.
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Identification of real forms

Most of the invariants introduced up to now, in particular all the
ones determined by the dimension of some distinguished
subalgebra, may allow us to distinguish complex Lie algebras but
are not suitable for identification of nonisomorphic real forms of
the same complex algebra. They necessarily give the same answer
for all of them. The most elementary invariant allowing such a
discrimination is the signature of the Killing form, i.e., the number
of its positive, negative and zero eigenvalues once it is brought to
diagonal form. Because over the field C the Killing form is bilinear,
not sesquilinear, its signature may change under a complex linear
transformation but remains invariant once we restrict ourselves to
real transformations. Therefore, it may allow the identification of a
particular real form of a semisimple or solvable Lie algebra. For
simple Lie algebras it is known that it allows complete
identification of the real form.
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Identification of real forms, cont’d

For nonsemisimple algebras one may find it useful to establish the
signature of the Killing form of some algebra constructed out of the
given algebra, e.g., of the Killing form of the algebra of derivations.
E.g., this procedure allows to distinguish all nonisomorphic real
forms of nilpotent algebras up to dimension 6 (in higher
dimensions characteristically nilpotent algebras with nilpotent
algebras of derivations appear, thus it fails in some cases).

Also, the type of transcendent functions present in the invariants
can be helpful; e.g., as we have already seen last time different real
forms may be distinguishable by presence of exponential versus
trigonometric functions in the generalized Casimir invariants.
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More computationally demanding invariants

Let us review some of the more involved constructions of invariants
of Lie algebras. The list cannot be exhaustive since new ways of
characterizing Lie algebras suited for their particular classes are
constantly being developed.

Going in the other direction than the characteristic series is the
construction of Lie algebras which are typically bigger than the one
we started with. The most natural possibility is to construct the
algebra of derivations of the given Lie algebra and investigate its
properties. Although it is of no use for semisimple Lie algebras
whose all derivations are inner, for other classes of algebras we may
obtain interesting information in this way. For example, a
low-dimensional (up to 6) complex nilpotent Lie algebra can be
fully identified once we determine its DS, CS and US and the
dimension of its algebra of derivations.
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Distinguishing algebras in classes involving parameters

Other invariants address the problem of the identification of
possible isomorphisms inside a class of algebras involving a
parameter. Such invariants can be constructed, e.g., using the
notion of (α, β, γ)-derivations introduced by J. Hrivnák and P.
Novotný.
For given α, β, γ ∈ F we call a linear operator A : g→ g an
(α, β, γ)-derivation when

αA[x , y ] = β[Ax , y ] + γ[x ,Ay ] (3)

for every x , y ∈ g. The vector spaces of A are denoted by
D(α, β, γ). In fact only the following values of (α, β, γ)

(α, 0, 0), (α, 1,−1), (α, 1, 0), (α, 1, 1), α ∈ F

should be used; any vector space D(α, β, γ) with different values of
parameters α, β, γ is equal to one in the above introduced range.
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(α, β, γ)-derivations

The dimension of each of these vector spaces provides us with
basis independent information about the given Lie algebra g. Their
importance lies in the fact that they depend on the continuous
parameter α; we have the “invariant function”

ψg(α) = dimD(α, 1, 1). (4)

If we are given a family of Lie algebras depending on one or more
continuous parameters and want to establish possible isomorphisms
between members of the family, we can compute the invariant
function ψg(α). The members of the family whose invariant
functions differ are necessarily nonisomorphic. When the invariant
functions of two algebras are the same, the algebras may be
isomorphic. Other criteria or an explicit search for a basis
transformation must be employed in order to complete the analysis
in this case.
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(α, β, γ)-derivations and identification of 3-dimensional
algebras

To illustrate the use of (α, β, γ)-derivations let us consider the
problem of identifying 3-dimensional solvable Lie algebras up to
isomorphisms. The fact that 3-dimensional complex Lie algebras
are completely characterized by the function ψg(α) was first
observed J. Hrivnák and P. Novotný.

Let us first consider the 3-dimensional Lie algebras parameterized
by two parameters a, b with nonvanishing Lie brackets in the
following form

ga,b : [e1, e3] = ae1, [e2, e3] = be2 (5)

where (a, b) 6= (0, 0). We will show how (α, 1, 1)-derivations allow
us to split the algebras ga,b into mutually nonisomorphic
subclasses.
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(α, β, γ)-derivations and identification of 3-dimensional
algebras, cont’d

Let us write an (α, 1, 1)-derivation A as

A(ej) =
3∑

k=1

Ak
j ek . (6)

Equation (3) with β = γ = 1 implies that

0 = −bA3
1e2 + aA3

2e1,

αa
∑
k

Ak
1ek = a(A1

1 + A3
3)e1 + bA2

1e2,

αb
∑
k

Ak
2ek = aA1

2e1 + b(A2
2 + A3

3)e2.

(7)
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(α, β, γ)-derivations and identification of 3-dimensional
algebras, cont’d

Thus the vector of constants
~A = (A1

1,A
2
1,A

3
1,A

1
2,A

2
2,A

3
2,A

1
3,A

2
3,A

3
3) defines an

(α, 1, 1)-derivation of algebra (5) if and only if it is annihilated by
the following matrix

M =



0 0 b 0 0 0 0 0 0
0 0 0 0 0 −a 0 0 0

a(α− 1) 0 0 0 0 0 0 0 −a
0 aα− b 0 0 0 0 0 0 0
0 0 aα 0 0 0 0 0 0
0 0 0 bα− a 0 0 0 0 0
0 0 0 0 b(α− 1) 0 0 0 −b
0 0 0 0 0 αb 0 0 0


.

(8)
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(α, β, γ)-derivations and identification of 3-dimensional
algebras, cont’d

In order to evaluate the function ψga,b(α) we have to compute the
rank of the matrix M as a function of the parameters α, a, b,

ψga,b(α) = 9− rankM. (9)

We find that

ψga,b(α) = 3, (αa− b)(αb − a) 6= 0, ab 6= 0, α 6= 0, 1,

= 4, (αa− b)(αb − a) = 0, ab 6= 0, a 6= −b, α 6= 0, 1,

or ab = 0, α 6= 0, 1,

= 5, a = −b, a 6= 0, α = −1,

ψga,b(0) = 3, ab 6= 0,

= 6, ab = 0,

ψga,b(1) = 4, a 6= b,

= 6, a = b.
(10)
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(α, β, γ)-derivations and identification of 3-dimensional
algebras, cont’d

We divide the algebras ga,b of the form (5) into classes Cp with
different values of ψga,b(α)

Cp = {ga,pa, gpa,a | a ∈ F, a 6= 0}, p ∈ F. (11)

and conclude that

Cp = C1/p (p 6= 0), Cp ∩ Cq = 0 whenever p 6= q, p 6= 1/q,

(12)

i.e., up to the identification p ' 1/p algebras belonging to
different classes (11) are not isomorphic. By an explicit
construction of transformations one may demonstrate that each of
the different classes (11) contains precisely one Lie algebra up to
isomorphism. The algebras in the class C0 are decomposable.
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(α, β, γ)-derivations and identification of 3-dimensional
algebras, cont’d

Next, one similarly considers the remaining complex 3-dimensional
solvable and nilpotent non-Abelian algebras which can be cast in
the form

ga : [e1, e3] = ae1, [e2, e3] = e1 + ae2 (13)

by a change of basis. We find that

ψga(α) = 3, a 6= 0, α 6= 1,

= 6, a = 0,

ψga(1) = 4, a 6= 0,

(14)

i.e., we have two distinct classes C̃ = {g0} and Ĉ = {ga | a 6= 0}.
An explicit computation shows that all algebras in class Ĉ are
mutually isomorphic, i.e., the class Ĉ can be represented by just
one algebra, e.g., g1.
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(α, β, γ)-derivations and identification of 3-dimensional
algebras, cont’d

Altogether, all nonisomorphic 3-dimensional solvable and nilpotent
algebras over the field of complex numbers can be identified by
their values of the invariant function ψg(α) as follows:

n3,1 : [e2, e3] = e1 ψn3,1(α) = 6,

s3,1(a) : [e1, e3] = e1 ψs3,1(a)(α) = 3, a 6= 0,−1, α 6= 1, a, 1/a,

[e2, e3] = ae2 = 4, a 6= 0,±1, α = 1, a, 1/a,

= 6, a = 1, α = 1,

= 3, a = −1, α 6= ±1,

= 4, a = −1, α = 1,

= 5, a = −1, α = −1,

s3,2 : [e1, e3] = e1 ψs3,2(α) = 3, α 6= 1,

[e2, e3] = e1 + e2 = 4, α = 1.
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Summary

We have introduced the Lie algebra identification problem,

we have reviewed some of the invariants that can be
computed easily and provide us the first rough splitting,

we have addressed the problem of identification of real forms,

and presented one example of a computationally more
complex invariant that allows us to identify isomorphic
algebras inside parametric classes together with its application
to 3-dimensional Lie algebras.
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Decomposable Lie algebras

We are given a Lie algebra g of dimension n with basis (x1, . . . , xn)
and Lie brackets

[xi , xk ] =
n∑

l=1

cik
lxl , 1 ≤ i , k ≤ n. (1)

The first step in identifying a Lie algebra g is to decide whether g
is decomposable, i.e., whether, by an appropriate change of basis,
we can decompose this algebra into a direct sum of two or more
nonzero indecomposable Lie algebras, i.e. ideals,

g = g1 ⊕ g2 ⊕ . . . gm. (2)

If g is decomposable then we wish to find explicitly a basis
transformation that will realize the decomposition. Below we shall
give a simple criterion of decomposability and an algorithm for
achieving a decomposition.



The basic idea

Our algorithm is based on efficient computation of idempotents in
the centralizer of the adjoint representation of the given algebra g.

The commuting algebra (or the centralizer of S in R) CR(S) of a
set S of square f × f matrices over the field F is the set of all
elements of the full ring R = Ff×f of square matrices of degree f ,
commuting elementwise with all elements of S :

CR(S) = {x ∈ R | [x ,S ] = 0}. (3)

An idempotent E is a nonzero element of the ring R satisfying

E 2 = E . (4)

The unit element E = 1 is called a trivial idempotent. This is the
only idempotent of rank f and hence the only nonsingular
idempotent. Any idempotent is conjugated to a diagonal matrix
with its diagonal matrix elements equal to 1 or 0.
Two idempotents E1 and E2 are orthogonal if E1E2 = E2E1 = 0.



Absolute indecomposability

When the field F is the field of real numbers we distinguish
between absolutely indecomposable Lie algebras and
indecomposable, but not absolutely indecomposable ones. A real
Lie algebra g is defined to be absolutely indecomposable if and
only if it is indecomposable and stays indecomposable after
complexification. For complex Lie algebras the notions of
indecomposability and absolute indecomposability are equivalent.
A convenient criterion of absolute indecomposability is given by the
following theorem.

Theorem 1

The finite-dimensional Lie algebra g is absolutely indecomposable if
and only if the traceless subalgebra A0 of the centralizer algebra
A = CR(adg) of the adjoint representation of g is closed under
multiplication.



Jacobson radical

In order to actually find the decomposition we need the following
notion:

The Jacobson radical J(S) of an associative algebra S ⊂ R is the
maximal nilpotent ideal of S . Since the field F is of characteristic
zero, we have

J(S) = {x ∈ S | Tr(xy) = 0, ∀y ∈ S} (5)

and J(S) consists entirely of nilpotent matrices. Here Tr(Z )
denotes the trace of the matrix Z .

We recall that division ring is a ring with unity in which every
nonzero element has a multiplicative inverse.



Algorithm for establishing whether a Lie algebra is
decomposable or not and how

Step 1

Remove the maximal central component of g, if one exists. This is
done using Theorem 2 below. From now on assume C (g) ⊆ D(g).

Theorem 2

A central decomposition of g, if it exists, can be obtained by
choosing a complement g1 of the intersection C (g) ∩ D(g) in
C (g), thus decomposing

C (g) = g1 ⊕ C (g) ∩ D(g). (6)

The algebra g2 is then chosen so that it satisfies

D(g) ⊆ g2, g2 ∩ C (g) ⊆ D(g). (7)



Algorithm, cont’d

Step 2

Determine the n × n matrices of the adjoint representation of g
and find the centralizer A = CR(adg) of the adjoint representation
in R = Fn×n. Choose a basis for A in the form
{a1 = 1n, a2, . . . , as} with Trai = 0, 2 ≤ i ≤ s. Denote by A0 the
traceless subset of A : A0 = {a2, . . . , as}.



Algorithm, cont’d

Step 3

Determine whether g is absolutely indecomposable by calculating
the traces of the products aiak , 2 ≤ i , k ≤ s (cf. Theorem 1). The
algebra g is absolutely indecomposable if and only if

Traiak = 0, 2 ≤ i , k ≤ s. (8)

If F = C and (8) holds, then g is indecomposable. If (8) does not
hold, or if F = R, proceed further.



Algorithm, cont’d

Step 4

Determine the Jacobson radical J(A) using the definition (5) (for
S = A). Choose a basis x1, . . . , xν for J(A) and its complement
b1 = 1n, . . . , bµ ∈ A = CR(adg) such that

b1 = 1n, Trbi = 0, 2 ≤ i ≤ µ. (9)

If F = R and µ = 2, then verify whether the relation

b22 = k1n mod J(A), k < 0, (10)

holds. If (10) does hold, then g is indecomposable but not
absolutely indecomposable. In all other cases the algebra g is
decomposable and we proceed to decompose it.



Algorithm, cont’d

Step 5

Run through the basis elements b2, . . . , bµ until one is found with a
reducible minimal polynomial. Call this element br . We now have
a nonnilpotent traceless matrix br in CR(A). Using the invariant
factors of br , or the rational roots theorem, and if necessary a more
powerful factorization procedure, factor the minimal polynomial mb

into two mutually prime monic nonconstant polynomials

mbi = f1f2, fj = gcd(mbi , f̄
ν
j ), j = 1, 2. (11)

We define the polynomials P1,P2 via P1f1 + P2f2 = 1. The matrix

M = P1(br )f1(br ) (12)

is a nontrivial idempotent in A/J(A), i.e., M2 = M mod J(A).



Algorithm, cont’d

Step 6

Perform a change of basis that diagonalizes M and realizes the
decomposition of g. This is done using a matrix G obtained by
placing the row space of M in its first r rows and the row space of
M − 1 in the last n − r rows. Thus columns 1, . . . , r and
r + 1, . . . , n of G−1 are the bases of the eigenspaces of M
corresponding to the eigenvalues 1 and 0, respectively. The new
basis of g is then given as

e ′i = G j
i ej . (13)



Algorithm, cont’d

Step 7

We have decomposed g into the direct sum of two algebras, g1 and
g2. Repeat the algorithm, starting at Step 2, for each component
and continue until we arrive at a decomposition into
indecomposable components.



Example: central decomposition

Let us consider the algebra

g = span{e1, e2, e3, e4, e5}

with the Lie brackets

[e2, e3] = e1 + e4, [e2, e5] = e3, [e3, e5] = −e2. (14)

The center is C (g) = span{e1, e4}, the derived algebra is
D(g) = span{e1 + e4, e2, e3}, and

C (g) ∩ D(g) = span{e1 + e4}. (15)

Thus, any g1 = span{e1 + κe4}, κ 6= 1 together with the algebra
g2 in the form

g2 = span{e1 + e4, e2, e3, e5 + αe1}, where α ∈ F arbitrary (16)

performs the direct decomposition of g into the direct sum

g = span{e1 + κe4} ⊕ span{e1 + e4, e2, e3, e5 + αe1}. (17)



Example: so(4) vs. so(1, 3)

Next, let us consider the algebras so(4) and so(1, 3). It is well
known that so(4) is decomposable and so(1, 3) is indecomposable
but not absolutely indecomposable. Let us derive these conclusions
using the algorithm described above and also find an explicit
decomposition.
The algebras so(4) and so(1, 3) have the Lie brackets

[x1, x2] = x3, [x1, x3] = −x2, [x2, x3] = x1, [x1, x5] = x6,

[x1, x6] = −x5, [x2, x4] = −x6, [x2, x6] = x4, [x3, x4] = x5,

[x3, x5] = −x4, [x4, x5] = εx3, [x4, x6] = εx2, [x5, x6] = εx1
(18)

where ε = 1 for so(4) and ε = −1 for so(1, 3).



Example: so(4) vs. so(1, 3), cont’d

Step 1

The center of so(4) and so(1, 3) vanishes, i.e., there is no central
component.

Step 2

The centralizer CR(adg) of the adjoint representation is

CR(adg) =

{(
u13 εv13
v13 u13

) ∣∣∣∣ u, v ∈ F
}
. (19)

We set

a1 = 16, a2 =

(
0 ε13
13 0

)
. (20)

We have A0 = span{a2}.



Example: so(4) vs. so(1, 3), cont’d

Step 3

We have Tra22 = 6ε. Therefore neither so(4) nor so(1, 3) is
absolutely indecomposable.

Step 4

The Jacobson radical J
(
CR(adg)

)
vanishes and we can set

b1 = a1, b2 = a2. We have

b22 = εb1. (21)

Consequently, so(4) is decomposable both as a real and as a
complex Lie algebra, whereas the real algebra so(1, 3) is
indecomposable but not absolutely indecomposable.

We proceed to decompose so(4) and the complexification soC(1, 3)
of so(1, 3).



Example: so(4) vs. so(1, 3), cont’d

Step 5

The matrix b2 has the reducible minimal polynomial

mb2(t) = t2 − ε =

{
(t − 1)(t + 1) when ε = 1,

(t − i)(t + i) when ε = −1.
(22)

We consider the two cases separately:

When ε = 1 we set f1(t) = t − 1 and f2(t) = t + 1. We find a
particular solution of the equations determining the polynomials in
the form P1(t) = 1

2 t and P2(t) = 1− 1
2 t. Thus we have

Mε=1 = P1(b2)f1(b2) =
1

2


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 . (23)



Example: so(4) vs. so(1, 3), cont’d

When ε = −1 we set f1(t) = t − i and f2(t) = t + i. We find that
P1(t) = 1

2 i and P2(t) = −1
2 i. Thus we have

Mε=−1 =
1

2


1 0 0 −i 0 0
0 1 0 0 −i 0
0 0 1 0 0 −i
i 0 0 1 0 0
0 i 0 0 1 0
0 0 i 0 0 1

 (24)

Step 6

We find changes of bases diagonalizing the matrices (23), (24).

ε = 1 : x ′1 = 1
2(x6 − x3), x ′2 = 1

2(x5 − x2), x ′3 = 1
2(x4 − x1),

x ′4 = 1
2(x2 + x5), x ′5 = 1

2(x1 + x4), x ′6 = 1
2(x3 + x6),

ε = −1 : x ′1 = 1
2(x3 + ix6), x ′2 = 1

2(x2 + ix5), x ′3 = 1
2(x1 + ix4),

x ′4 = 1
2(ix6 − x3), x ′5 = 1

2(ix5 − x2), x ′6 = 1
2(ix4 − x1).

(25)



Example: so(4) vs. so(1, 3), cont’d

In these new bases the algebras so(4) and soC(1, 3), respectively,
split explicitly into direct sums of simple subalgebras spanned by
x ′1, x

′
2, x
′
3 and x ′4, x

′
5, x
′
6. We have

[x ′1, x
′
2] = x ′3, [x ′1, x

′
3] = −x ′2, [x ′2, x

′
3] = x ′1,

[x ′4, x
′
5] = −x ′6, [x ′4, x

′
6] = x ′5, [x ′5, x

′
6] = −x ′4

(26)

when ε = 1, and

[x ′1, x
′
2] = −x ′3, [x ′1, x

′
3] = x ′2, [x ′2, x

′
3] = −x ′1,

[x ′4, x
′
5] = x ′6, [x ′4, x

′
6] = −x ′5, [x ′5, x

′
6] = x ′4

(27)

for ε = −1.



Example: so(4) vs. so(1, 3), cont’d

These new bases are not unique, any bases of the row spaces of the
matrices M and M − 1 can be used. Thus, the Lie brackets can be
obtained in a different form when the procedure is repeated.

Step 7

The subalgebras arising in the decompositions (26) and (27) are
simple, i.e., further indecomposable.

Thus, we have decomposed the algebra so(4) into a direct sum of
two subalgebras, both of which turn out to be isomorphic to so(3)
upon further inspection

so(4) = so(3)⊕ so(3). (28)

Similarly, the algebra so(1, 3) is indecomposable but not absolutely
indecomposable. Its complexification soC(1, 3) decomposes into

soC(1, 3) = sl(2,C)⊕ sl(2,C). (29)



Summary

We have introduced the notion of (absolutely) decomposable
Lie algebra,

we presented a simple criterion for absolute indecomposability,

we have explained the algorithm for determination whether the
algebra is decomposablebut not absolutely indecomposable,

in the case the algebra is decomposable we have shown how
to decompose it explicitly,

we have demonstrated the procedure on two examples.
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Levi theorem

In any Lie algebra g there exists a unique maximal solvable ideal
R(g) called the radical as was already mentioned. The radical
satisfies R(g) = 0 if and only if g is semisimple. On the other hand
the radical R(g) coincides with g if and only if g is solvable.

Theorem (Levi theorem)

Any finite-dimensional Lie algebra g can be decomposed into a
semidirect sum

g = p E R(g) (1)

where the complement p of the radical R(g) in g is a semisimple
Lie algebra, isomorphic to the factor algebra g/R(g). The
semisimple Lie algebra p is called the Levi factor or Levi subalgebra
of g.



Examples of Levi decompositions, Mal’cev theorem

Let us review some important examples of Levi decompositions:

trivial: where the sum is in fact direct
gl(n) = sl(n)⊕ u(1), u(n) = su(n)⊕ u(1)

nontrivial: Poincaré algebra so(1, 3) E a(4)
Symmetry algebra of the heat equation
sl(2) E h(1) (see later)

A sequel to the Levi theorem is the result of Mal’cev

Theorem (Mal’cev theorem)

Any two Levi factors p1 and p2 of the Lie algebra g are
isomorphically mapped one into the other by some inner
automorphism Φ of the form

Φ = exp(adz) (2)

where z ∈ NR(g).



Levi theorem expressed in a basis

Levi theorem in other words says that given a basis of g, say
(x1, . . . , xn), it is always possible to find a new basis

{s1, s2, . . . , sσ, r1, r2, . . . , rρ}, σ + ρ = n, (3)

such that r = span{r1, . . . , rρ}, p = span{s1, . . . , sσ}, and the
commutation relations are such that

[p, p] = p, [r, r] ( r, [p, r] ⊆ r. (4)

The question that we address here is: how does one find a
convenient change of basis that realizes the Levi decomposition?
Notice that a Levi decomposition can be performed for both
decomposable and indecomposable Lie algebras. From the point of
view of identifying a Lie algebra g, it is usually preferable to first
perform a direct decomposition into indecomposable components
and then construct a Levi decomposition for each component.



Since the factor algebra g/r ∼= p is semisimple and hence perfect,
i.e., its derived algebra D(p) satisfies D(p) = p, we have

D(g) + r = g. (5)

From (5) we obtain the isomorphism

D(g)/[D(g) ∩ r] ∼= g/r (6)

and hence dim(D(g)/[D(g) ∩ r]) = n − ρ = σ.

The problem of obtaining a Levi decomposition is one of linear
algebra.



Algorithm

First we identify the radical and simplify our computation by
construction of a perfect subalgebra via repeated commutation.

Next, the essential part of the algorithm is applied. Its basic idea is
the construction of a proper subalgebra of the Lie algebra g which
contains p. Repeating the procedure finitely many times one
obtains a subalgebra of g which has vanishing radical, i.e.,
coincides with the sought Levi factor p.



Step 1

Find the radical r = R(g). This is a simple task of linear algebra,
since we can use the property

R(g) = {x ∈ g | K (x , y) = 0, ∀y ∈ D(g)}, (7)

where K (x , y) is the Killing form

K (x , y) = Tr
(
ad(x)ad(y)

)
.

If g = R(g), then g is solvable and p = 0 in (1). If R(g) = 0, then
g = p is semisimple. In both cases the Levi decomposition is trivial.



Step 2

If 0 6= p 6= g, we calculate the derived series of g:

g(1) = [g, g], . . . , g(k+1) =
[
g(k), g(k)

]
, . . .

till we arrive, after a finite number of steps, at a perfect Lie algebra

g(k+1) = g(k), g(k) 6= g(k−1). (8)

If we know the Levi decomposition of g(k), i.e.,

g(k) = p E R
(
g(k)

)
(9)

then we obtain the Levi decomposition of g by extending the basis
(r1, . . . , rτ ) of R

(
g(k)

)
to a basis of R(g) : (r1, . . . , rτ , rτ+1, . . . , rρ).



Step 3

We observe that D(r) ≡ r2 is a characteristic ideal of g and
consequently the subalgebra g̃ = pu D(r) of g is a Levi
decomposable algebra with the Levi factor p and radical r2. We
shall proceed to construct its basis.
Let us choose a basis for g in the form

(e1, . . . , eµ, r1, . . . , rν , x1, . . . , xσ), µ+ ν = ρ (10)

where (e1, . . . , eµ) is a basis for D
(
R(g)

)
, (r1, . . . , rν) for a

complement of D
(
R(g)

)
in R(g), and (x1, . . . , xσ) for a

complement of R(g) in g. Thus we have the following particular
Lie brackets

[xi , xj ] = cij
kxk + dij

prp + fij
lel , (11)

[xi , rp] = gip
qrq + hip

mem. (12)

Summation over repeated indices k = 1, . . . , σ, l ,m = 1, . . . , µ and
p, q = 1, . . . , ν applies throughout.



Step 3, cont’d

A basis of g̃ = p E D(r) can be without loss of generality chosen in
the form

{e1, . . . , eµ, x̂1, . . . , x̂σ} (13)

where x̂k ∈ span{xk , r1, . . . , rν}, i.e.,

x̂j = xj + bpj rp. (14)

The span of the set (13) is by construction complementary to
span{r1, . . . , rν}. Thus it forms a basis of p E D(r) if and only if it
closes under the Lie bracket. That is always true for commutators
of the type [x̂i , el ] since D(r) is an ideal in g. It remains to satisfy

[x̂i , x̂j ] = cij
k x̂k + f̂ij

l
el (15)

for some constants f̂ij
l
. Notice that the structure constants cjk

k

are the same in (11) and (15) because they are the structure
constants of the semisimple factor algebra g/r in the same basis
xj mod r = x̂j mod r, j = 1, . . . , σ.



Step 3, cont’d

Substituting (14) into (15) and dropping any term proportional to
el we obtain the following set of equations, to be satisfied for all
1 ≤ i < j ≤ σ

dij
qrq + bpj gip

qrq − bpi gjp
qrq = cij

kbqk rq, (16)

i.e., a set of 1
2σ(σ − 1)ν linear inhomogeneous equations

gjp
qbpi − gip

qbpj + cij
kbqk = dij

q (17)

for σν unknowns bpi . Due to the Levi theorem the set of
equations (17) always has a solution. Thus, once we find any
particular solution of (17) we have a basis of g̃ = p E D(r). We
repeat the procedure until we arrive at k ∈ N such that

r(k) = 0.



Example: the symmetry algebra of the heat equation

Let us consider the finite dimensional part of the algebra of
infinitesimal point symmetries of the heat equation. It is spanned
by the following vector fields in R3 with coordinates t, x , u

Y1 = 4t2∂t + 4xt∂x − (2t + x2)u∂u, Y2 = 4t∂t + 2x∂x ,

Y3 = ∂t , Y4 = −2t∂x + xu∂u,

Y5 = u∂u, Y6 = ∂x .
(18)

Evaluation of the commutators gives the following Lie brackets of
an abstract Lie algebra (with yi replacing the vector fields Yi )

[y1, y2] = −4y1, [y1, y3] = −2y2 + 2y5, [y1, y6] = 2y4,

[y2, y3] = −4y3, [y2, y4] = 2y4, [y2, y6] = −2y6,

[y3, y4] = −2y6, [y4, y6] = −y5.
(19)



Example: the symmetry algebra of the heat equation,
cont’d

In Steps 1 and 2 we find that the Lie algebra (19) is perfect and its
radical is spanned by y4, y5, y6. The radical (equal to the
nilradical) is the Heisenberg algebra h(1). The derived algebra of
the radical is spanned by y5.
The basis of the form (10) can be chosen as

e1 = y5, r1 = y4, r2 = y6, x1 = y1, x2 = y2, x3 = y3
(20)

with the Lie brackets

[r1, r2] = −e1, [r1, x2] = −2r1, [r1, x3] = 2r2, [r2, x1] = −2r1,

[r2, x2] = 2r2, [x1, x2] = −4x1, [x1, x3] = 2e1 − 2x2, [x2, x3] = −4x3.
(21)



Example: the symmetry algebra of the heat equation,
cont’d

By an inspection of (21) we see that e1, x1, x2, x3 span a subalgebra
of g. Thus, we have p E D

(
R(g)

)
= span{e1, x1, x2, x3}.

Next, we construct the Levi decomposition of
p E D

(
R(g)

)
= span{e1, x1, x2, x3} with the nonvanishing Lie

brackets

[x1, x2] = −4x1, [x1, x3] = 2e1 − 2x2, [x2, x3] = −4x3. (22)

The solution of the set of linear equations (17) is

b11 = 0, b12 = −1, b13 = 0

and leads to the desired basis for the Levi factor in the form

x1 = y1, x2 − e1 = y2 − y5, x3 = y3. (23)



Example: the symmetry algebra of the heat equation,
cont’d

Notice that in this case the Levi factor of the subalgebra
span{e1, x1, x2, x3} coincides with its derived algebra and is
therefore unique. However, as a Levi factor of the whole algebra g
it is not unique since a choice of the subalgebra p E D

(
R(g)

)
different from span{e1, x1, x2, x3} was possible. As stated in
Theorem 2, the Levi factor p is determined only up to inner
automorphisms of g.
We conclude that the Levi decomposition of the “heat algebra” g,
Eq. (18) is

g ' sl(2,R) E h(1) (24)

where the Levi factor sl(2,R) has the basis

Y1 = 4t2∂t + 4xt∂x − (2t + x2)u∂u,

Y2 − Y5 = 4t∂t + 2x∂x − u∂u, Y3 = ∂t
(25)

and the radical is the Heisenberg algebra spanned by Y4,Y5,Y6.



8-dimensional example

Let us consider an 8-dimensional Lie algebra g with the Lie brackets

[y1, y2] = 2y2, [y1, y3] = −2y3 + 2y6, [y1, y4] = 2y4,

[y1, y5] = 2y5, [y1, y7] = 2y7, [y2, y3] = y1 + y5 + y8,

[y2, y6] = y5, [y2, y8] = 2y4, [y3, y5] = −y4 + y6,

[y3, y8] = y6, [y4, y8] = 2y4, [y5, y6] = y4,

[y5, y8] = y5, [y6, y8] = y6, [y7, y8] = 2y7.
(26)

In Step 1 we find that its radical is spanned by y4, y5, y6, y7, y8 and
the nilradical by y4, y5, y6, y7.



8-dimensional example, cont’d

We proceed to Step 2. The derived series is

g(1) = D(g) = span{y1 + y8, y2, . . . , y7},
g(2) = g(3) = span{y1 + y8, y2, y3, y4, y5, y6}.

(27)

Thus, the Levi factor of g is found once the Levi factor of g(2) is
constructed using the algorithm. The nilpotent non-Abelian radical
of g(2) is spanned by y4, y5, y6 with a single nonvanishing Lie
bracket

[y5, y6] = y4.



8-dimensional example, cont’d

We choose the basis as in (10)

e1 = y4, r1 = y5, r2 = y6, x1 = y1 + y8, x2 = y2, x3 = y3.
(28)

The Lie brackets of g̃ = g(2) in this basis become

[r1, r2] = e1, [r1, x1] = −r1, [r1, x3] = e1 − r2,

[r2, x1] = r2, [r2, x2] = −r1, [x1, x2] = −2e1 + 2x2,

[x1, x3] = r2 − 2x3, [x2, x3] = r1 + x1.
(29)

In order to find p E D
(
R(g̃)

)
we have to perform the change of

basis (14). The conditions (17) reduce to the equations

b22 = 0, b13 = 0, b12 + b21 = 0, b23 − b11 = 1.



8-dimensional example, cont’d

Thus, a particular solution of (17) is

b11 = 1, b21 = 0, bp2 = bp3 = 0, p = 1, 2,

which corresponds to the change of basis

x̂1 = x1 + r1 = y1 + y5 + y8, x̂2 = x2 = y2, x̂3 = x3 = y3. (30)

The vectors e1, x̂1, x̂2, x̂3 form a basis of p E D
(
R(g̃)

)
. In this basis

we have the Lie brackets

[x̂1, x̂2] = −2e1 + 2x̂2, [x̂1, x̂3] = e1 − 2x̂3, [x̂2, x̂3] = x̂1. (31)

The radical of p E D
(
R(g̃)

)
is spanned by e1 which coincides with

the center of p E D
(
R(g̃)

)
. Thus, the Lie algebra (31) is

decomposable into a direct sum of a simple algebra sl(2,F) and a
central component spanned by e1, and the algorithm on the direct
decomposition can be used.



8-dimensional example, cont’d

Alternatively, we use the change of basis (14)

x̄1 = x̂1 + b̂11e1, x̄2 = x̂2 + b̂12e1, x̄3 = x̂3 + b̂13e1

once again, arriving at the conditions (17) expressed as

b̂11 = 0, b̂12 = −1, 2b̂13 = −1.

Thus, we have constructed a basis {x̄1, x̄2, x̄3} of the Levi factor p
of g in the form

x̄1 = x̂1 =y1 + y5 + y8,

x̄2 = x̂2 − e1 =y2 − y4,

x̄3 = x̂3 − 1
2e1 =y3 − 1

2y4.



8-dimensional example, cont’d

To sum up, the Levi factor of the algebra (26) is

p = span
{
y1 + y5 + y8, y2 − y4, y3 − 1

2y4
}

(32)

and is isomorphic to sl(2,F).

Let us recall that the Levi factor is generically far from unique. In
our example, another choice for it is spanned by

x̃1 = y1 + y8, x̃2 = y2 − y4, x̃3 = y3 − y6 (33)

and, in fact, the choice (33) is more convenient because the Lie
brackets of the algebra (26) are more compact when written in
terms of x̃1, x̃2, x̃3. Different choices of Levi factors arise through
different choices of the particular solutions of the systems of linear
equations involved.



Summary

We have recalled the Levi theorem and expressed it explicitly
in a basis,

we have explained an algorithm which allows us to determine
an explicit decomposition of the given Lie algebra, using only
the solution of linear equations,

we have presented two examples demonstrating the use of the
algorithm.
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Classification of solvable Lie algebras

There are two ways of proceeding in the classification of solvable
Lie algebras: by dimension, or by structure.

The dimensional approach for real and complex Lie algebras was
successful up to dimension 6 (S. Lie, L. Bianchi, G.M.
Mubarakzyanov, P. Turkowski). Some partial classifications are
known for solvable Lie algebras in dimension 7 and nilpotent
algebras up to dimension 8 (M.P. Gong, Gr. Tsagas, A.R. Parry).

It seems to be neither feasible, nor fruitful to proceed by dimension
in the classification of Lie algebras g beyond dim g = 6. It is
however possible to proceed by structure, i.e. to classify all
solvable Lie algebras with the nilradical of a given type.
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Recall: Basic concepts and notation

Three series of ideals – characteristic series of g:

derived series g = g(0) ⊇ . . . ⊇ g(k) ⊇ . . . defined

g(k) = [g(k−1), g(k−1)], g(0) = g.

If ∃k ∈ N such that g(k) = 0, then g is solvable.

lower central series g = g1 ⊇ . . . ⊇ gk ⊇ . . . defined

gk = [gk−1, g], g1 = g.

If ∃k ∈ N such that gk = 0, then g nilpotent. The largest
value of K s.t. gK 6= 0 is the degree of nilpotency.

upper central series z1 ⊆ . . . ⊆ zk ⊆ . . . ⊆ g where z1 is the
center of g, z1 = C (g) = {x ∈ g|[x , y ] = 0, ∀y ∈ g}
and zk are the higher centers defined recursively through

zk+1/zk = C (g/zk).
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Recall: Basic concepts and notation, continued

Any Lie algebra g has a uniquely defined nilradical NR(g), i.e. the
maximal nilpotent ideal.

A derivation D of a given Lie algebra g is a linear map

D : g→ g

such that for any pair x , y of elements of g

D([x , y ]) = [D(x), y ] + [x ,D(y)]. (1)

If an element z ∈ g exists, such that

D = adz , i.e. D(x) = [z , x ], ∀x ∈ G ,

the derivation is inner, any other one is outer.
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An automorphism Φ of g is a regular linear map

Φ : g→ g

such that for any pair x , y of elements of g

Φ([x , y ]) = [Φ(x),Φ(y)]. (2)

Ideals in the characteristic series as well as their centralizers are
invariant with respect to all derivations and automorphisms, i.e.
belong among characteristic ideals.
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Construction of all solvable Lie algebras with the given
nilradical

We assume that the nilradical n, dim n = n is known. That is, in
some basis (e1, . . . , en) we know the Lie brackets

[ei , ej ] = Nij
kek . (3)

We wish to extend the nilpotent algebra n to all possible
indecomposable solvable Lie algebras s having n as their nilradical.
Thus, we add further elements f1, . . . , ff to the basis (e1, . . . , en)
which together will form a basis of s. It follows from [s, s] ⊂ n that

[fa, ei ] = (Aa)ji ej , 1 ≤ a ≤ f , 1 ≤ j ≤ n,

[fa, fb] = γab
iei , 1 ≤ a, b ≤ f . (4)
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Since n is the maximal nilpotent ideal of s, no nontrivial linear
combination of Aa can be a nilpotent matrix, i.e. they are linearly
nil–independent.

Consider the adjoint representation of s restricted to the nilradical
n. Then ad(fa)|n is a derivation of n. In other words, finding all
sets of matrices Aa in (4) is equivalent to finding all sets of outer
nil–independent derivations of n

D1 = ad(fa)|n, . . . ,Df = ad(ff )|n, (5)

such that [Da,Db] are inner derivations.

γab
i are then determined up to elements in the center C (n) of n by

[Da,Db] = γab
iad(ei )|n, i.e. the knowledge of all sets of such

derivations almost amounts to the knowledge of all solvable Lie
algebras with the given nilradical n.
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Isomorphic Lie algebras with the given nilradical

If we

1 add any inner derivation to Da, i.e. we consider outer
derivations modulo inner derivations,

D ′a = Da +
n∑

j=1

r ja ad(ej)|n, r ja ∈ F. (6)

2 perform a change of basis in n such that the Lie brackets (3)
are not changed,

D ′a = Φ ◦ Da ◦ Φ−1, Φ ∈ Aut(n) ⊆ GL(n,F). (7)

i.e. we consider only conjugacy classes of sets of outer
derivations (modulo inner derivations)

3 change the basis in the space span{D1, . . . ,Df },
the resulting Lie algebra is isomorphic to the original one.
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Suitable basis of n to begin with

Starting with any complement m1 of n2 in n one can construct a
sequence of subspaces mj such that

n = mK umK−1 u . . .um1 (8)

where
nj = mj u nj+1, mj ⊂ [mj−1,m1]. (9)

By construction of these subspaces, any derivation (automorphism)
is determined once its action on m1 is known. We shall assume
that we work in a basis of n which respects the decomposition (8).
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Because nj = mK u . . .umj , any derivation now takes a block
triangular form

D =


DmKmK

. . . DmKm2 DmKm1

. . .
...

...
Dm2m2 Dm2m1

Dm1m1

 . (10)

where the elements of Dmjmk
, k ≤ j = 2, . . . ,K are linear functions

of elements in the last column blocks Dm1m1 , . . . ,Dmj−k+1m1 .
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Now one can easily establish that:

Any inner derivation has vanishing diagonal blocks.

A derivation D is nilpotent if and only if Dm1m1 is nilpotent.

Derivations D1, . . . ,Df are linearly nilindependent if and only
if (D1)m1m1 , . . . , (Df )m1m1 are linearly independent.

If all pairwise commutators of the derivations D1, . . . ,Df are
inner derivations then necessarily (D1)m1m1 , . . . , (Df )m1m1

must pairwise commute.
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Estimate on maximal value of f

Thus, f = dim s− dim n is bounded by the maximal number of
commuting m1 ×m1 matrices. i.e. satisfies

f ≤ dim n− dim n2. (11)

The bound (11) is saturated for many classes of nilpotent Lie
algebras whose solvable extensions were previously investigated –
e.g. Abelian, naturally graded filiform nn,1, Qn, a decomposable
central extension of nn,1, and of nilpotent triangular matrices. On
the other hand, the bound (11) is not saturated in the case of
Heisenberg nilradicals h where the maximal number of
non–nilpotent elements is in fact equal to dim h+1

2 < dim h− 1.
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Example: 3–dimensional solvable Lie algebras

In this case the restriction (11) shows that the dimension of the
nilradical dimNR(s) is 2 or 3. When dimNR(s) is 3, the algebra is
equal to its nilradical, i.e., nilpotent. When dimNR(s) = 2 we
have an Abelian nilradical and the solvable algebra s is determined
once the action of one nonnilpotent element f1 on the nilradical
n = NR(s) = span{e1, e2} is specified. Any change of basis in the
nilradical is allowed because any regular linear map is an
automorphism of n and consequently the task is reduced to the
classification of 2× 2 nonnilpotent matrices with respect to
conjugation and overall rescaling. We find the following canonical
forms for the matrix D1.
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Example: 3–dimensional solvable Lie algebras, cont’d

Over the field of complex numbers the matrix D1 has one of
the following forms (

1 0
0 a

)
,

(
1 1
0 1

)
where the parameter a satisfies 0 < |a| ≤ 1, if |a| = 1 then
arg(a) ≤ π.

Over the field of real numbers the matrix D1 has one of the
following forms(

1 0
0 a

)
,

(
α 1
−1 α

)
,

(
1 1
0 1

)
where the parameters a, α satisfy −1 ≤ a ≤ 1, a 6= 0, α ≥ 0.
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Example: 3–dimensional solvable Lie algebras, cont’d

The condition a 6= 0 arises from the restriction to indecomposable

algebras. The matrix

(
α 1
−1 α

)
is present only over the field R

because over the field C it is upon rescaling conjugated to

(
1 0
0 a

)
with the choice a = (α + i)/(α− i).
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Example: 3–dimensional solvable Lie algebras, cont’d

The corresponding solvable algebras are

s3,1

e1 e2 e3
e1 0 0 −e1
e2 0 ae2

,

s3,2

e1 e2 e3
e1 0 0 −αe1 + e2
e2 0 −e1 − αe2

,

which is isomorphic to s3,1 over the field C, and

s3,3

e1 e2 e3
e1 0 0 −e1
e2 0 −e1 − e2

.

A similar investigation can be performed in any dimension when
the nilradical is Abelian and has codimension one in s.
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Types of nilradicals investigated so far

Nilradicals with low degree of nilpotency (J.C. Ndogmo, J.
Rubin, P. Winternitz)

The algebras already investigated in this class are the Abelian
and Heisenberg algebras (in arbitrary finite dimensions).
These algebras possess large algebras of derivations that have
well-understood properties. E.g., for an Abelian nilradical, any
linear transformation is a derivation and any regular linear
map is an automorphism. Consequently, the construction of
solvable extensions is reduced to the consideration of Abelian
subalgebras in gl(n) and their equivalence. Similarly, for
Heisenberg algebras h(n), the task is reduced to the study of
Abelian subalgebras of sp(2n).
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Types of nilradicals investigated so far, continued

Nilradicals of Borel subalgebras of simple Lie algebras
(L. Šnobl, S. Tremblay, P. Winternitz)

Nilpotent algebras in this class have a very particular structure
given by the corresponding root diagram. Consequently, all
derivations of such algebras can be found in explicit form
using cohomological arguments. This was done by G.F. Leger
and E.M. Luks. A prime example of a nilradical in this class is
the algebra of strictly upper triangular matrices.
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Types of nilradicals investigated so far, continued

Nilradicals with a high degree of nilpotency (J.M. Ancochea,
R. Campoamor–Stursberg, L. Garcia Vergnolle, D. Karásek, L.
Šnobl, P. Winternitz and others)

The structure of Lie brackets of such algebras usually
significantly restricts the algebra of derivations. Therefore the
algebras of derivations can often be written down explicitly in
arbitrary dimension and similarly for the automorphisms.
Many explicit lists of solvable algebras with nilradicals in this
class are known.
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Example: Solvable extensions of the model filiform
nilradical

We consider a class of nilpotent algebras nn,1, the so-called model
filiform algebra, where dim nn,1 = n = 3, 4, . . . and the Lie brackets
are given by

[e1, en] = 0, [ek , en] = ek−1, 2 ≤ k ≤ n − 1. (12)

We shall consider this algebra over the field F = R,C.
The dimensions of the subalgebras in the characteristic series are

DS = [n, n−2, 0], CS = [n, n−2, n−3, . . . , 1, 0], US = [1, 2, . . . , n−2, n].
(13)

The maximal Abelian ideal a of nn,1 is unique; it is the centralizer
of the highest center zn−2 = span{e1, . . . , en−2}, i.e.
a = span{e1, . . . , en−1}.
We mention that for n = 3 we have n3,1 ' h(1). The algebra n4,1
is the only 4–dimensional indecomposable nilpotent Lie algebra.
For n ≥ 4 nn,1 is no longer isomorphic to h(N).
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Example: Solvable extensions of the model filiform
nilradical, continued

Using the estimate (11) we immediately find any solvable Lie
algebra with the nilradical nn,1 has dimension dim s = n + 1, or
dim s = n + 2. Classifying the outer derivations of nn,1 into
equivalence classes we find

Theorem

Three types of solvable Lie algebras of dimension dim s = n + 1
exist for any n ≥ 4. They are represented by the following three
cases:

1 The matrix A = A1 of the derivation D1 in Eq. (4) diagonal

[f , ek ] = ((n − k − 1)α + β) ek , k ≤ n − 1, [f , en] = αen.
(14)
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Example: Solvable extensions of the model filiform
nilradical, continued

Theorem (continued)

The mutually nonisomorphic algebras of this type are

sn+1,1(β) : α = 1, β ∈ F\{0, n − 2},
DS = [n + 1, n, n − 2, 0], CS = [n + 1, n, n, . . .],US = [0],

sn+1,2 : α = 1, β = 0,

DS = [n + 1, n − 1, n − 3, 0], CS = [n + 1, n − 1, n − 1, . . .],

US = [0],

sn+1,3 : α = 1, β = 2− n,

DS = [n + 1, n, n − 2, 0], CS = [n + 1, n, n, . . .],

US = [1, 1, . . .],

sn+1,4 : α = 0, β = 1,

DS = [n + 1, n − 1, 0], CS = [n + 1, n − 1, n − 1, . . .],

US = [0].
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Example: Solvable extensions of the model filiform
nilradical, continued

Theorem (continued)

2 The matrix A = A1 of the derivation D1 in Eq. (4)
nondiagonal, its diagonal determined by α = β = 1. We have

sn+1,5 : [f , ek ] = (n − k)ek , k ≤ n − 1, [f , en] = en + en−1,

DS = [n + 1, n, n − 2, 0], CS = [n + 1, n, n, . . .], US = [0].
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Example: Solvable extensions of the model filiform
nilradical, continued

Theorem (continued)

3 The matrix A = A1 of the derivation D1 in Eq. (4)
nondiagonal, its diagonal determined by α = 0, β = 1.

sn+1,6(a3, . . . , an−1) : [f , ek ] = ek +
k−2∑
l=1

ak−l+1el , k ≤ n − 1,

[f , en] = 0,

aj ∈ F, at least one aj satisfies aj 6= 0. Over C: the first
nonzero aj satisfies aj = 1. Over R: the first nonzero aj for
even j satisfies aj = 1. If all aj = 0 for j even, then the first
nonzero aj (j odd) satisfies aj = ±1. We have

DS = [n + 1, n − 1, 0], CS = [n + 1, n − 1, n − 1, . . .],US = [0].
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Example: Solvable extensions of the model filiform
nilradical, continued

Theorem

Precisely one class of solvable Lie algebras sn+2 of dim s = n + 2
with nilradical nn,1 exists. It is represented by a basis
(e1, . . . , en, f1, f2) and the Lie brackets involving f1 and f2 are

[f1, ek ] = (n − 1− k)ek , 1 ≤ k ≤ n − 1, [f1, en] = en,

[f2, ek ] = ek , 1 ≤ k ≤ n − 1, [f2, en] = 0, [f1, f2] = 0.

For this algebra we have

DS = [n + 2, n, n − 2, 0], CS = [n + 2, n, n, . . .],US = [0].
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Solvable extensions of Borel nilradicals

Let us now concentrate on nilpotent Lie algebras n that are
isomorphic to the nilradicals of the Borel subalgebras of a complex
simple Lie algebra. Such nilpotent Lie algebra n can be interpreted
as the one consisting of all positive root spaces. We shall present
general structural properties of all solvable extensions of n.

The motivation for such an investigation comes from the particular
case of triangular nilradicals which are Borel nilradicals of simple
Lie algebras Al = sl(l + 1,F).
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Triangular nilradicals – summary

The results for triangular nilradicals can be summarized as follows:

Every solvable Lie algebra s(nNR , q) with the triangular
nilradical t(l + 1) has the dimension

d = q + nNR , 1 ≤ q ≤ l

where nNR = l(l+1)
2 is the dimension of the nilradical t(l + 1)

and l is the rank of the simple Lie algebra Al .

A “canonical basis” {Xα,Nik} of s(nNR , q) exists in which the
commutation relations are

[Nik ,Nab] = δkaNib − δbiNak ,

[Xα,Nik ] =
∑
p<q

Aαik , pqNpq,

[Xα,X β] = σαβN1(l+1).
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The matrices Aα are linearly nilindependent and upper
triangular. For q ≥ 2 they pairwise commute. The only
off–diagonal matrix elements in Aα that may not vanish are

Aα12 , 2(l+1), Aαj(j+1) , 1(l+1), Aαl(l+1) , 1l (15)

The diagonal elements Aαi(i+1) , i(i+1), 1 ≤ i ≤ l are free and
determine the rest of the diagonal elements

Aαik , ik =
k−1∑
j=i

Aαj(j+1) , j(j+1), i + 1 < k
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All constants σαβ vanish unless we have Aγ1(l+1) , 1(l+1) = 0 for
γ = 1, . . . , q. The remaining off-diagonal elements Aαik , ab in
equation (15) also vanish, unless the diagonal elements satisfy

Aβik , ik = Aβab , ab for all β = 1, . . . , q.

The maximal value q = l corresponds to exactly one solvable
Lie algebra for which all matrices Aα are diagonal and all
elements Xα commute. This algebra is isomorphic to the
Borel subalgebra of Al .

For the minimal value q = 1 at most l − 1 off-diagonal
elements of A1 are nonvanishing. They can be normalized to
1 when F = C and to ±1 when F = R.
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We shall show that essentially the same results hold for solvable
Lie algebras with any Borel nilradical. This simultaneous treatment
is made possible by the fact that all outer derivations of these
nilradicals are known, due to the work of G.F. Leger and E.M. Luks
(Leger G F, Luks E M 1974 Cohomology of nilradicals of Borel
subalgebras. Trans. Amer. Math. Soc. 195 305–316.)
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Borel nilradicals

Let g be a simple complex Lie algebra, g0 its Cartan subalgebra,
l = rank g = dim g0. Let us denote by ∆ the set of all roots, by
∆+ the set of all positive roots and by ∆S = {α1, . . . , αl} the set
of simple roots. Let gλ denote the root subspace of the root λ.
Let Sβ denote the Weyl reflection with respect to the root β,

Sβ(α) = α− 2
〈α, β〉
〈β, β〉

β, α ∈ ∆.

Every (semi)simple complex Lie algebra g contains a unique (up to
isomorphisms) maximal solvable subalgebra, its Borel subalgebra
b(g). It contains the Cartan subalgebra and all positive root vectors

b(g) = g0 u
(
u{gλ|λ ∈ ∆+}

)
.
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The properties of root systems imply that the Borel subalgebra is
indeed a solvable subalgebra of g with the nilradical

NR(b(g)) = u{gλ|λ ∈ ∆+}.

For the sake of brevity we shall call the nilpotent Lie algebra
NR(b(g)) the Borel nilradical (although it is not the nilradical of
the simple Lie algebra g).
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Let

gm = u{gλ |λ =
l∑

i=1

miαi ,

l∑
i=1

mi ≥ m}.

The vectors eα, α ∈ ∆S generate the entire
NR(b(g)) = u{gλ|λ ∈ ∆+} through commutators

[gλ, gµ] = gλ+µ whenever λ, µ, λ+ µ ∈ ∆+

and this implies that the ideals in the lower central series of the
nilradical NR(b(g)) of the Borel subalgebra are

(NR(b(g)))m = gm.

The center z of NR(b(g)) is one–dimensional and is spanned by eλ
where λ is the highest root of g, i.e. the only root such that no
root λ+ α, α ∈ ∆+ exists. The center z coincides with the last
nonvanishing ideal in the lower central series.
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Outer derivations of Borel nilradicals

All derivations of the nilradical n = NR(b(g)) were found by G. F.
Leger and E. M. Luks and the result is as follows.

Theorem

Let g be a complex simple Lie algebra of rank l , g0 its Cartan
subalgebra, ∆S = {α1, . . . , αl} the set of simple roots and
n = NR(b(g)). Then the algebra of derivations of the nilradical
n = NR(b(g)) of the Borel subalgebra of a complex simple Lie
algebra g satisfies

Der(n) = Out(n) u Inn(n),

dimOut(n) = 2l ,

Out(n) = span{Di , D̃i |i = 1, . . . , l} where the derivations
Di , D̃i are defined below.
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Outer derivations of Borel nilradicals

Theorem (continued)

The derivations Di act diagonally in the basis of n consisting of
positive root vectors eα, α ∈ ∆+

Di (eα) = mieα, α =
l∑

j=1

mjαj ∈ ∆+.

D̃i are nilpotent outer derivations acting on simple root vectors

D̃i (eβ) = eγ , where γ = Sαi (λ), if β = αi , (16)

= 0, if β = αj , j 6= i .

The action of D̃i on eα, α ∈ ∆+\∆S follows from the definition of
a derivation (1).

Classification and Identification of Lie Algebras



For the sake of brevity, we shall write Si (λ) instead of Sαi (λ) and
introduce nonnegative integer constants si

Si (λ) = λ− siαi .

We notice that for g = Al only two constants si , namely s1 and sl ,
are nonvanishing and equal to one; for all other simple algebras
only one si is nonvanishing and turns out to be equal to 1 or 2.

It can be easily deduced that for any simple complex Lie algebra g
the derivations D̃i of the algebra NR(b(g)) give zero whenever
they act on eβ, β ∈ ∆+\∆S .
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Let us assume from now on that l > 2. Then we always have
Si (λ) /∈ ∆S for all i = 1, . . . , l and consequently

D̃i ◦ D̃j(eαk
) = 0 (17)

for every αk ∈ ∆S . The Leibniz property (1) allows us to conclude
that equation (17) must hold for any α ∈ ∆+, i.e. we have

D̃i ◦ D̃j = 0, i , j = 1, . . . , l .

Classification and Identification of Lie Algebras



The derivations Di obviously commute among each other and act
diagonally on D̃j ,

[Di , D̃j ] ∈ span{D̃j}. (18)

To conclude, under the assumption that l is greater than 2, the 2l
outer derivations Di , D̃i span a Lie subalgebra Out(NR(b(g))) of
the algebra of all derivations Der(NR(b(g))). This algebra can be
further decomposed into a semidirect sum of an l–dimensional
Abelian ideal spanned by the nilpotent derivations D̃i and an
l–dimensional Abelian subalgebra spanned by Di .
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Solvable extensions of the Borel nilradicals NR(b(g))

Let us now study the structure of any solvable Lie algebra with the
nilradical NR(b(g)), l = rank g > 2.

From the fact that there are only l linearly nilindependent
derivations Di in Out(NR(b(g))) we conclude that the maximal
number of nonnilpotent basis elements in any solvable Lie algebra
s with the nilradical NR(b(g)) is l . One algebra with this number
of nonnilpotent basis elements is already known, namely the Borel
subalgebra b(g) of the simple Lie algebra g. Is it the only one?
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Let us assume that we have a solvable Lie algebra s with the
nilradical n = NR(b(g)) and l = rank g nonnilpotent basis
elements fi . They define l outer linearly nilindependent derivations
D̂ i such that D̂ i = ad(fi )|n. Using the transformation (6) we may
choose the basis vectors fi so that

D̂ i = Di +
l∑

j=1

ωi
j D̃j

where Di , D̃j are the derivations defined before.
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Because D̂ i lie in the subalgebra Out(NR(b(g))) of
Der(NR(b(g))) and at the same time [D̂ i , D̂ j ] ∈ Inn(NR(b(g)))
must hold, we find that

[D̂k , D̂ j ] = 0. (19)

This requirement together with equation (18) in turn implies

ωj
i [Dk , D̃i ] + ωk

i [D̃i ,Dj ] = 0. (20)

for every i , j , k = 1, . . . , l such that k 6= j (no summation over i).

Classification and Identification of Lie Algebras



For any given i we can find ĩ such that [D̃i ,Dĩ ] 6= 0. Consequently,

the value of ω ĩ
i together with the root system specifying the Lie

brackets [Dk , D̃i ] completely determines all ωj
i for j 6= ĩ .

Altogether, we still have one undetermined parameter ω ĩ
i for each

i = 1, . . . , l . Next, we show that one can eliminate these
parameters through a suitable choice of automorphism in
equation (7).
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The essence of the argument is that for each i = 1, . . . , l we can
find D̂ ĩ which transforms nontrivially under the transformation

Dj → Dj + ti [D̃i ,Dj ],

D̃j → D̃j , (21)

D̂ j = Dj +
l∑

k=1

ωj
kD̃k → Dj + ti [D̃i ,Dj ] +

l∑
k=1

ωj
kD̃k .

due to [D̃i ,Dĩ ] 6= 0. We use it to set ω ĩ
i = 0 after the

transformation. Equation (20) then implies that after the
transformation all ωj

i = 0.
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Therefore we have found that our derivations D̂ j can be brought to
the form

D̂ j = Dj

through a conjugation by a suitable automorphism Φ̃ of NR(b(g)).
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Next, we show that we can always accomplish

[fi , fj ] = 0. (22)

We have
[fi , fj ] = γijeλ, γij = −γji

which is the preimage of the relation [ad(fi )|n, ad(fj)|n] = 0. It can
be shown that by a suitable transformation of the form

fi → fi + τieλ

one can always make fi , fj satisfy Eq. (22).
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To sum up, we have found that for any complex simple Lie algebra
g such that rank g > 2 the maximal solvable Lie algebra with the
nilradical NR(b(g)) is unique and isomorphic to the Borel
subalgebra b(g) of g.

We notice that the same is true also when rank g = 1 or
rank g = 2, i.e. g = sl(2), sl(3), so(5) or G2.

Thus, we have proven the following theorem:
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Solvable extensions of Borel nilradicals of maximal
dimension

Theorem

Let g be a complex simple Lie algebra, b(g) its Borel subalgebra
and n = NR(b(g)) the nilradical of b(g). The solvable Lie algebra
with the nilradical NR(b(g)) of the maximal dimension
dim n + rank g is unique and isomorphic to the Borel subalgebra
b(g) of g.
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Solvable extensions of Borel nilradicals of non–maximal
dimension

A similar analysis can be performed also for non–maximal solvable
extensions. In this case we have derivations

D̂a =
l∑

j=1

(
σaj Dj + ωa

j D̃j

)
, a = 1, . . . , q (23)

representing the elements fa in the adjoint representation of s on n,
D̂a = ad(fa)|n. The q × l matrix σ = (σaj ) must have maximal

rank, i.e. q, in view of the nilindependence of D̂a. However we can
no longer set σaj equal to the Kronecker delta δaj as was the case
for q = l . This leads to cumbersome complications. Therefore, we
shall only present the resulting theorems whose proofs can be
found in our paper.
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Theorem

Any solvable extension s of the nilradical NR((
¯
g)) by q

nonnilpotent elements fa, a = 1, . . . , q ≤ rank g is defined by q
commuting derivations D̂a and a constant q × q antisymmetric
matrix γ = (γab). The derivations D̂a determine the Lie brackets

[fa, eα] = D̂a(eα), a = 1, . . . , q, α ∈ ∆+

and take the form

D̂a = ad(fa)|n =
l∑

j=1

(
σaj Dj + ωa

j D̃j

)
, a = 1, . . . , q,

where σ = (σaj ), a = 1, . . . , q, j = 1, . . . , l has the rank q.
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Theorem (continued)

For any given value of k all parameters ωa
k are equal to zero when

the condition
l∑

j=1

σaj λj − σak(1 + sk) 6= 0 (24)

is satisfied for at least one a ∈ {1, . . . , q}. The condition (24) is
always satisfied for at least q values of the index k , i.e. there are
at most l − q values of k such that some of the parameters ωa

k are
nonvanishing.
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Theorem (continued)

The matrix γ = (γab) defines the Lie brackets

[fa, fb] = γabeλ, a, b = 1, . . . , q.

When
l∑

j=1

λjσaj 6= 0

holds for at least one a ∈ {1, . . . , q}, the constants γab are all
equal to 0, i.e.

[fa, fb] = 0.
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We remark that the conditions in Theorem 9 are sufficient, i.e. any
set of constants σaj , ω

a
j and γab satisfying the properties listed in

the theorem gives rise to a solvable extension of the nilradical
NR((

¯
g)). On the other hand, the description presented in

Theorem 9 is not unique, i.e. different choices of σaj , ω
a
j and γab

may lead to isomorphic algebras. As already noted, we may replace
the derivations D̂a by any linearly independent combination of
them thus changing all the parameters σaj , ω

a
j and γab. Also we

may employ the scaling automorphisms to change the values of ωa
j

and γab.
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We remark that by virtue of indecomposability of the Borel
nilradicals, all solvable Lie algebras described in Theorem 9 are
indecomposable.

We notice that the statements of Theorem 9 significantly resemble
the results for triangular nilradicals which they generalize.
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Dimension nNR + 1 solvable extensions of the Borel
nilradicals

Theorem

Any solvable extension of the nilradical NR((
¯
g)) by one

nonnilpotent element is up to isomorphism defined by a single
derivation

D̂ = ad(f1)|n =
l∑

j=1

(
σjDj + ωj D̃j

)
chosen so that the first nonvanishing parameter σj is equal to one.

ωk vanishes whenever
∑l

j=1 σjλj − σk(1 + sk) 6= 0. At most l − 1
parameters ωk are nonvanishing. They are all equal to 1 over the
field of complex numbers. Over the field of real numbers they are
equal to ±1 and all parameters ωk with sk = 0 have the same sign.
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Summary

We have presented the approach to the classification of
solvable Lie algebras based on construction of solvable
extensions of nilpotent algebras.

We have reviewed which classes of solvable Lie algebras were
already described in this way and demonstrated several
examples.

We have introduced the structure of Borel nilradicals and
presented their solvable extensions.
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