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Abstract

The Liouville equation is well known to be linearizable by a
point transformation. It has an infinite dimensional Lie point
symmetry algebra isomorphic to a direct sum of two Virasoro
algebras. We show that it is not possible to discretize the
equation keeping the entire symmetry algebra as point
symmetries. We do however construct a difference system
approximating the Liouville equation that is invariant under
the maximal finite subalgebra SL, (2,R) ® SL, (2,R). The
invariant scheme is an explicit one and provides a much better
approximation of exact solutions than comparable standard
(non invariant) schemes.
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Introduction

The purpose of this article is to investigate the possibility of
discretizing the Liouville equation

V4
Zyy = €, (1)
or its algebraic version
Uy, — Uy Uy, = U, u=e*, (2)

while preserving all of its Lie point symmetries. This is quite a
challenge, since the Lie point symmetry group of these
equations is infinite dimensional. We shall call (2) the
algebraic Liouville equation.
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Introduction, cont’'d

The article is part of a general program on the study of
continuous symmetries of discrete equations. This program
has several aspects each possibly requiring different
approaches. They are:

m In relativistic and nonrelativistic quantum mechanics or
field theory on a discrete space—time, a problem is to
discretize the continuous theory while preserving
continuous symmetries such as rotational, Lorentz, Galilei
or conformal invariance. One possible way of doing this is
the way explored in the present article, namely to not use
a preconceived constant lattice. Instead one can construct
an invariant set of equations defining both the lattice and
system of difference equations. The lattice thus appears
as part of a solution of a set of discrete equations.
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Introduction, cont’'d

m The study of symmetries of genuinely discrete
phenomena, such as molecular or atomic chains, where
the discrete lattice is given a priori.

m The third aspect of this program fits into the general field
of geometrical integration. The basic idea is to improve
numerical methods of solving specific ordinary and partial
differential equations, by incorporating important
qualitative features of these equations into their
discretization. Such features may be integrability,
linearizability, Lagrangian or Hamiltonian formulation, or
some other features.
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Introduction, cont’'d

We concentrate on the preservation of Lie point symmetries.
In our case the idea is to take an ordinary or partial differential
equation (ODE or PDE) with a known Lie point symmetry
algebra L realized by vector-fields. The differential equation is
then approximated by a difference system with the same
symmetry algebra. The difference system consists of a set of
difference equations, describing both the approximation of the
ODE (PDE) and the lattice. The difference system is
constructed out of the invariants of the Lie point symmetry
group G of the original ODE (PDE). The Lie algebra £ of G is
realized by the same vector fields as for the continuous
equation, however its action is prolonged to all points of the
lattice, rather than to derivatives.
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Lie point symmetries of the continuous Liouville equation

The Liouville system (1) is a remarkable equation that has
already been thoroughly investigated. It was shown by
Liouville himself that it is linearized into the linear wave
equation by the transformation

zln{ ¢X¢y
e

Putting ¢ (x,y) = ¢1 (x) + ¢2 (y), where ¢;, i = 1,2 are
arbitrary functions, we get a very general class of solutions of

(1) (and (2) ), namely

R

] , ¢xy = 0. (3)
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Point symmetries of the cont. Liouville equation, cont'd

In view of (3) the Liouville equation is linearizable and it is not
surprising that its symmetry algebra is infinite dimensional, as
was already known in 1898. The symmetry algebra of the
algebraic Liouville equation (2) is given by the vector fields

X(f(x)) = f(x)0x— fi(x) ud,,
Y(g) = g(y)9, —g (y) ud,, (5)

where f and g are arbitrary smooth functions.
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Point symmetries of the cont. Liouville equation, cont'd

Let us find the most general second order expression of the
form I (x,y, u, uy, Uy, Uy, Uxy, Uy,) invariant under the group
corresponding to the algebra (5). The second order
prolongation of X (f) is

pr(z)X(f) = fo,—f [uau—i—QuXE)uX—i—uy(()uy—F

+ 2ny aqu + 3Uxx 8uXx + Uyy aUyy] (6)
—f" [udu, + 1y Dy, + 3uxDy, | — "0

Uxy Uxx

and similarly for Y (g). We see that the last term in (6) is
absent in the subalgebra.
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Point symmetries of the cont. Liouville equation, cont'd

The group SL, (2,R) ® SL, (2,R) allows two functionally
independent "strong” invariants, namely

Ul — Uy uy (2w —3u2) (2uuy, —3u?)
h=—"""——, L= .
(7)

U3
pri® X (f) h =pr® Y (g) h =0 (8)
for arbitrary f and g, but

ub

We have
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Point symmetries of the cont. Liouville equation, cont'd

2fx (3U2 — 2uuy,y)

X () = Se3 Z2um)
2 302 — 2uy,
@y (g) p = B2 )

Thus, h is invariant under the direct product the two Virasoro
groups VIR (x) ® VIR (y). The PDE /; = A, for any real
constant A, is invariant under this group. For A # 0 we scale
to A =1 and obtain the equation (2). For A =0 we obtain an
equation equivalent to the linear wave equation z,, = 0,
namely

uty, — uxt, = 0. (11)
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Symmetry preserving discretization of partial difference

equations

The basic idea of the invariant discretization of a PDE is to

replace it by a system of difference equations, formed out of
invariants of the action of the symmetry group of the PDE.

This difference system (AS) describes both the original PDE
and an invariant lattice.
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Symmetry preserving discretization of PDEs, cont'd

To be specific, let us restrict to the case of one scalar PDE
involving two independent variables (x,y) and one dependent
one u(x,y). The PDE is

F (X, y,u, Uy, Uy, Uge, Uyy, Uyy,---) =0 (12)

and its Lie point symmetry group G is assumed to be known,
together with its symmetry algebra L.

The AS describing (12) will have the form
E, (Xm+i,n+ja Ym+in+j> Um+i,n+j) = 0: (13)
Oézl,...,N, iminSiSimaX7 jmin Sjgjmax-

On the next page we depict a general lattice, a priori extending
indefinitely in all directions. An orthogonal lattice (not
necessarily uniform) is obtained by setting € =0, 0% = 0.
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Symmetry preserving discretization of PDEs, cont'd
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Figure: 1. Points on a general lattice, e.g. Xx0,0 = X, X1,0 = X + hy 0,
Xo,1 =X+e€1, X110 =X+ hiog+er1, xo0=x4 hio+ hp,

X02 = X+ €01+ €02, Y00 =Y, Yo1 =Y+ ko1, y10 =y + 10,
yii=Yy+ko1+0611, Yo2 =y +ko1+ koo yo0=1y+ 10+ d20.
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Symmetry preserving discretization of PDEs, cont'd

The difference system (13) is written on a stencil: a finite
number N of adjacent points, sufficient to reproduce, in the
continuous limit, all derivatives figuring in the differential
equation (12). For instance, for a first order PDE the minimal
number of points on a stencil is three: (m,n) (m+ 1, n)
(m, n+ 1). Since the system (13) is autonomous, i.e. the
labels (m, n) do not figure in the AS (13) explicitly, we can
shift the stencil around on the lattice arbitrarily. For
convenience we will choose the reference point to be

(m, n) = (0,0) and build the stencil around it. Thus, in (13)
we start with m = n = 0 and then shift as needed.
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Symmetry preserving discretization of PDEs, cont'd

To describe an arbitrary second order PDE we need a stencil
consisting of at least six points. A possible choice is to take
points {(0,0),(1,0),(0,1),(1,1),(2,0),(0,2)}. For PDEs of
the type

uy, = F(x,y,u,uy, uy), (14)

i.e. not involving u,, u,,, it might be sufficient to take four

points: {(0,0),(1,0),(0,1), (1,1)}.
An element of the symmetry algebra £ of the PDE (12) will
have the form

7 = E(x,y,u)0x +n(x,y,u)d, + ¢(x, y, u)d, (15)

where the smooth functions &, 1 and ¢ are known (obtained
by a standard algorithm for PDEs).
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Symmetry preserving discretization of PDEs, cont'd

In order to obtain an invariant AS (13) we must construct it
out of difference invariants of the group G, the Lie point
symmetry group of the PDE (12). To calculate these
invariants we consider the action of the vector field Z at some
reference point {Xm n, Ym.n, Umn} and prolong it to all points
figuring on a chosen stencil. This amounts to a prolongation
to the discrete jet space:

pr2 - Z(fn”hnaxm,n _I_ /’7’77,'78}/m,n + ¢m7naum,n)' (16)

As in the continuous case, we can use both strong and weak
invariants. The strong and weak invariants satisfy

prZl, =0, (17)
prZly, |1,—o = 0. (18)
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Symmetry preserving discretization of PDEs, cont'd

To determine both types of invariants we choose a basis
{21, e Z\} (A =dimL) for the Lie algebra £ and solve
the set of equations

prza/(xm—i-j,n—i—k:}/m—&-j,n—i-ky Um+j,n+k) = 07 a= ]-7 e 7A' (19)

For strong invariants the rank r of the matrix of coefficients in
(19) is maximal and the same for all points (m + j, n + k).
Invariants exist if we have r = A < N. Weak invariants are
only invariant on some manifold in the space of points,
obtained by requiring that the rank of coefficients in (19) be
less than maximal. Thus, there may be more weak invariants
than strong ones (strong invariants satisfy both (17) and
(18)). The number of strong invariants is n = N-A.
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Invariant discretization of the algebraic Liouville equation

on a 4-point stencil

We choose the four points £ = {(0,0),(0,1),(1,0),(1,1)}
on Fig. 1 and can translate them to any stencil

fa " ={(m,n)(m+1,n)(mn+1)(m+1,n+1)} on the
(x,y) plane. The vector fields (5) of the symmetry algebra £
can be discretized and prolonged to all points of the stencil:

XP(E)=prX(f) = > [f (Xmn) O = F' (Xmin) Urmn Do) -
(m,n)Efa

YP(g)=prY(g) = Z [g (Ym,n) Oymn — & (Ym,n) Unmn O] -
(m,n)Efa

The prime and the dot denote (continuous) derivatives with
respect to x and y, respectively.
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Invariant discretization on a 4-point stencil, cont'd

Let us first restrict to the maximal finite-dimensional
subalgebra sl (2, R) @ sl, (2,R). A simple basis for the
invariants is given by

& = (x01=x00)(x11—x1,0) €0,1€1,1
(x0,0—x1,0)(X0,1—x1,1) hio(hi,0+e1,1—€0,1)’
_ o0—y1,0)01—y1,1) _ 81,0011 20
= (¥0,1—y0,0)(y1,1—y1,0) ~  ko,1(ko,1+61,1—01,0) ( )

_ 2 2
Hy = Uo,0lo,1€0,1 ks 1 )
Ho = uyoun1€f (Kot + 01,1 — 61,0)

Hy = u1,0(h1,0—€0,1)?(ko,1—01,0)? (21)

7 12
Uo,0 €51 ko,l

2 2

H, = ”1,161,1(k0,1*51,1*51,0)
4 — 2 2
uo,0 hl,o 51,0
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Invariant discretization on a 4-point stencil, cont'd

The quantities hy o, ko1, €01, €11, 01,0 and 011 are defined on
Fig. 1. The invariants £ and 7; can be conveniently used to
define an invariant lattice, e.q. by putting &, = A, m; = B,
where A and B are constants. We choose the simplest
possibility, namely

&1 =0, m = 0. (22)

This implies that e.g. o1 — X0,0 = €01 = 0 and also as a
consequence xj 1 — x1,0 = €1,1 = 0. Similarly 419 = d11 = 0.
Thus we have

Xm,n = Xm, Ym,n = Yn, (23)

i.e. Xm n depends only on the first index, y,, , only on the
second one.

D. Levi, L. Martina and Lie-point symmetries of the discrete Liouville equation



Invariant discretization on a 4-point stencil, cont'd

We thus obtain an orthogonal lattice (in an invariant manner).
The quantities & and 7; are only invariant under
SL,(2) ® SL,(2), however we have

)%D(Xg')fl = (x11 — X0,0)(X1.0 — X0,1)&1 |6,=0 = 0 (24)
XP(x*)m = 0.

It follows from the commutation relations that a quantity
annihilated by XP(x3) is also annihilated by X?(x") for any n.
Thus the lattice condition (22) is invariant under

VIR(x) ® VIR(y). On the other hand the equations &; = A,
1m. = B, where A and B are nonzero constants are not
Virasoro invariant. We conclude that an orthogonal lattice is
obligatory if we define it in terms of & and 7, alone.
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Invariant discretization on a 4-point stencil, cont'd

The invariants Hy, - - - , Hy of (21) are not suitable on the
lattice (22) since they all vanish or become infinite on the
lattice. Before specifying the lattice we must choose new
invariants (functions of those in (20) and (21)) which remain
finite and nonzero for ¢;j = 9; ; = 0. Only two such

SL,(2) ® SL,(2) invariants exist, namely:

b = HiHs; = ugiu1ohi okgy, (25)
1H

b = ?ﬁi = UO,OUl,lhiokg,l- (26)
1
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Invariant discretization on a 4-point stencil, cont'd

Neither of them is strongly invariant under the Virasoro group,
since we have

XP(xP)h ==k o,  XP(xP)h = —higd. (27)

The equation J, — J; = 0 is Virasoro invariant (on its solution
set) and this equation is a discretization of uu,, — uyu, =0
(equivalent to the wave equation z,, = 0).

Putting uoo = u(x,y), uro = u(x + hio,y),

Up1 = U(X,y + k071) and thi1= U(X + h170,_y + ko’l),
expanding in a Taylor series and keeping only the lowest order
terms, we find

Jo— = h3 okg (vt — ueuy). (28)
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Invariant discretization on a 4-point stencil, cont'd

The Liouville equation is approximated by the difference
scheme

Jy— ho=a| PP+ bh| K| | K|+ d] S P2, (29)
& =0, m=0 a+tbtc+d=L1

Indeed the Taylor expansion yields
J— Jy — [an/ 2 - bR 4 M gy + dJ§/2] - (30)
1
= hiok(il [uuey — ueu, — u3} + h§70k3,1 [Euyuxx(u —-1) +

3 1 3
—§U2Ux} + hiokg,l [Euxuyy(u —1) - 5“2“)/] + O(hlll,okg,l)’
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Invariant discretization on a 4-point stencil, cont'd

where the constant a, b, ¢, d appear in the O(h{ ok ;) terms.
The AS (29) is SL,(2) ® SL,(2) invariant, not however
Virasoro invariant. The scheme is suited for solving a boundary
value problem. Give (x, y) in the points (m,0), (0, n) then
start from (0,0), (1,0), (0,1) and calculate (x1.1, y1.1, U1.1).
Then move the stencil up or to the right and cover the entire
first quadrant in the computational space (m, n).
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Numerical results and analysis

In order to to test the efficiency of the numerical algorithms
based on the invariant difference equation (29), we will solve a
set of boundary value problems for the Liouville equation,
comparing the results with the analytic solutions and with the
corresponding ones obtained by the standard finite difference
approximation

3
Uiilppo — Up1l1p0 = hk UO,O' (31)

Both the equations (29) and (31) relate the values at the
corner of a rectangle of meshes of length h and k, respectively.
Then a natural class of boundary value problems consists in
giving the value of u on two sets of points of the form (m,0)
and (0, n) for m, n € N in the computational basis.
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Numerical results and analysis, cont'd

In the 4 point scheme, adopted both in the standard
discretization of the Liouville equation and in the invariant
discretization (29), the value of u at the right top point in
each rectangle is obtained using the values in the three other
vertices. In the considered boundary value problem, the values
of u are given in the points (m,0) and (0,n) ( the red points).
Then, starting from the rectangle at the left bottom corner,
denoted by 0, one gets the value uy; from the data connected
by the dotted diagonal. This can be used to evaluate the right
top point of the rectangle denoted by 1 together with the data
in (1,0) and (2,0). Proceed further, till the first row of
rectangles is completed, then repeat the same procedure for
the second row, involving also the data in (0,2). In the figure
are indicated the pair of points involved in the computation of
the invariants in each rectangle.
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Numerical results and analysis, cont'd
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Figure: 2
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Numerical results and analysis, cont'd

Thus, one can proceed in calculating the fourth value of u
from three given values on each rectangle, as depicted on
Fig.2, starting from the left bottom one at the corner. The
problem with the formula (29) is that it involves algebraic
functions. However, a possibility is to make a special choice
for the parameters, namely set b = d = 0, which leads to a
linear equation for u;; and hence to an explicit scheme. More
precisely, we have a 1-parameter family of recursion formulae

_ Upath (ahk/to1u10 + 1) (32)

1= )
Up,o ((a — ].)hk1 /Up,1U10 + 1)
for arbitrary real a ( with ¢ = 1 — a). Furthermore, to simplify
calculations we require that the unknown function is strictly
positive. In the actual calculations we used the symmetric case
a=c=1.
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Numerical results and analysis, cont'd

We used different exact solutions of the Liouville equations,
among them for instance

2As2es(xty)
h = ————s,
(Ae + e)
f o= 8(174(X+%))(1—4y)exp(74(x2+%)2+2(x+%)274y2+2}’>’ (33)
(A A o)
- 2876

(52x%2 4+ 1) (62y%2 4+ 1) (tan—1(Bx) + v tan—i(dy) + 04)27

for certain values of the constants A, s, «, (3,7, 9.
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Numerical results and analysis, cont'd

Once the values for the lattice constants h and k and the
corner point (0, 0) are fixed the values of the analytic solution
on the points of the boundary are computed and used as initial
data for the numerical calculations. For some of the functions
defined above, both the invariant formula (32) and the
standard formula (31) are used to compute the solutions and
compare them with the known analytically computed values at
the lattice points. As an illustrative example, in Figure 3, we
report the calculations made for the solution f;.
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Numerical results and analysis,
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Numerical results and analysis, cont'd

The solution f3 with the choice of parameters
a=6,=1v=10=1Iis numerically computed giving a
boundary value problem on a lattice with corner point

(x00, Yoo) = (—2.5, —2.5) and steps of equal length

h = k = 0.02 for a lattice of 260 x 260 points. Numerical
results using the invariant formula (32) are shown in a), and
the relative error with trespect to the analytic solution in b).
Analogously, numerical results obtained by the standard
formula (31) are reported in ¢) and the corresponding relative
error in d). Despite the generic similarities of the two results,
the difference of two orders of magnitude in the relative errors
is remarkable.

D. Levi, L. Martina and Lie-point symmetries of the discrete Liouville equation



Numerical results and analysis, cont'd

Figure: 4. The same analysis as above for the solution f, on a lattice
with corner point (xgo, Yoo) = (—1.5, —1.0) and steps of equal length
h = k = 0.02 for a lattice of 60 x 60 points.
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Numerical results and analysis,

Figure: 5. The same analysis as above for the solution f; for the choice
A =12.8397,s = 3.86233 on a lattice with (xo0, Y0o) = (—3,—1) and
steps of equal length h = k = 0.02 for a lattice of 1800 x 1800 points.
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Comments on a 6-points stencil

The algebra is given by the same formulas, where the
summation is extended to the generically translated 6-point
stencil shown on Fig. 1. The number of functionally
independent SL, (2,R) ® SL, (2, R) invariants that we can
construct is 12. As a basis for them we choose the six
invariants (20) and (21) and we construct the six additional
ones by replacing into their expressions the sets of points

{(0,1),(0,2),(1,1),(1,0)} and {(1,0),(2,0),(1,1),(0,1)}.
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Comments on a 6-points stencil, cont'd

Thus we add the invariants

& = (Xo,z - Xo,1) (X1,1 — X1 0) - (Xo,1 - X1,0) (X1,1 - Xz,o)
2 — 7 )
X1,0 — X0,1) \(X1,1 — X0,2 X1,1 — X0,1) \(X2,0 — X1,0
( )( ) ( )( )
_ (}/1,0 - yO,l) (}/1,1 — Yo, 2) (}/1,1 - YO,l) (Y2,o - )’1,0)
2 = =
(vo2 = ¥0.1) (Y11 — y10)’ (y1.0 = ¥0,1) (20 — y11)’
Hs = uoitio2(x02 — %01)° (Vo2 — Y01) 2,
He = thol2o (Xz,o - X1,o) 2 (Y2,o - }/1,0) 2,

We will again choose a lattice satisfying the the relations (22),
which are compatible with a uniform orthogonal lattice and

the formulas (23) - (24).

Lie-point symmetries of the discrete Liouville equation
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Comments on a 6-points stencil, cont'd

Once we choose the lattice by putting & =0, 7, = 0 we
automatically also have

G ==m=nm3=0, &=1 =1 (34)

Out of Hy,---, Hg we can form 4 invariants that are nonzero
and finite when (34) is satisfied, i.e. €;x = 0 = ;« for all
(i, k) on the stencil. These invariants are

Jl = U071U170h%k12, J2 = U070U171h%k12, (35)

_ 212 _ 212
J3 = U0’2U1,1h1k2, J4 = U2’0U1,1h2k1.
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Symmetries of Rebelo-Valiquette Liouville discretized

equation

Rebelo and Valiquette considered a symmetry preserving
discretization of the Liouville equation (2) namely:

Lgv = Ui1Upo — U10Vo1 — UooUo1 UlO(Xlo - Xoo)()/o1 - )’oo),
Xo1 = Xo0, Y10 = Yoo- (36)

The equation for the lattice clearly states that x; = x; and
Yii = Yj, so the lattice coincides with the one we used above.

They constructed (36) from the invariance with respect to the
pseudo—group

Uij

f(xiv1)—F(xi) 8(yi+1)—8(¥))
Xi+1—Xj Yi+1—Yj

Xi=1f(x), y=gly) =

(37)

for arbitrary regular f and g.
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Symmetries of Rebelo-Valiquette equation, cont’d

First, let us notice that the equation (36) is not invariant with
respect the algebra s/, (2,R) @ sl, (2,IR) considered in the
previous sections. In fact it results that

xP (Xz) Lgvhgvzo = U00U01U10(X10 - X00)2()/01 - }/00) (38)

and similarly for Y2 (y?).
Thus, let us look here for infinitesimal symmetries of (36) of
the form

)? = Q(l)(XIJ) Yij U’J)axu + Q(z)(xw Yij» u’J)ayl'j (39)
+Q,§- (Xis Xt 15 Yij» Yigr1s Uij)Ouy -
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Symmetries of Rebelo-Valiquette equation, cont’d

The symmetry algebra of the Liouville equation presented by
Rebelo and Valiquette is indeed the sum of two Virasoro
algebras determined by the two functions F and G:

X(F,G) = F(x)0x + G(y;)0, (40)
F(x+1) — F(x) n G(yir1) — G(yi)
Xjt1 — Xj Yiv1 — Yi 4
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Symmetries of Rebelo-Valiquette equation, cont’d

The main difference between these generators and those in
Section 4 is that the coefficients of J,,, in Rebelo-Valiquette
depend on two space points. Thus, the expression (39) has to
be understood as a summation over all points of the lattice.
On the contrary our formula contains only finite sums over the
stencil points. Thus the Rebelo—Valiquette discretization of
the Liouville equation is invariant under VIR(x) ® VIR(y), but
these are generalized symmetries rather than point ones.
These are actually very special generalized symmetries: The
Lie algebra (41) can be integrated to the finite transformations
(37). These finite transformations were actually the starting
point in the Rebelo-Valiquette approach.
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Conclusions

We have shown that at least on a four—point lattice it is not
possible to discretize the Liouville equation (2) (nor (1)) while
preserving VIR(x) ® VIR(y) as the Lie point symmetry group.
That is also impossible on a six—point lattice. On the other
hand, Rebelo and Valiquette [23] have introduced a special
type of generalized symmetries that leave their discretization
of the algebraic Liouville equation invariant. In the continuous
case these symmetries reduce to point ones. In the discrete
case they are special in that the vector fields can be integrated
to group transformations acting on the equation and on the
lattice. This is somewhat similar to the case of the symmetries
of the Toda hierarchy [8] where some generalized symmetries
contract to point ones in the continuous limit.
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Conclusions, cont'd

From the point of view of numerical methods it remains to
explore which discretization provides better results. A
discretization preserving the maximal finite subgroup of an
infinite dimensional point symmetry group, or one that
transforms point symmetries into generalized ones.

As stated in the Introduction, the main purpose of this article
is to investigate how continuous physical theories can be
discretized while preserving their continuous Lie point
symmetries. For the Liouville equation we have shown that in
a complete discretization it is possible to preserve invariance
under under the maximal finite subgroup. The infinite
dimensional Lie pseudogroup does not survive as a group of
point symmetries. Rebelo and Valiquette have shown that the
entire Virasoro pseudo group does survive in a different
discretization, but as generalized symmetries.
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Conclusions, cont'd

In Section 5 we have tested the quality of our invariant
discretization as a numerical method. We have shown that it
actually performs very well. We are of course aware that what
we here call "standard” methods can be improved in many
other ways. The use of point symmetries in numerical
solutions of partial differential equations deserves a further
detailed analysis.

Another interesting point is that the linearizable discretization
of Adler and Startsev preserves no point symmetries. It is thus
important to decide which features of a continuous theory one
wishes to preserve in a discretization. In this case linearizability
is incompatible with the preservation of point symmetries.
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